Advertisement
Research Article| Volume 86, ISSUE 4, P329-337, April 2023

Download started.

Ok

The oropharynx of men using HIV pre-exposure prophylaxis is enriched with antibiotic resistance genes: A cross-sectional observational metagenomic study

Published:February 08, 2023DOI:https://doi.org/10.1016/j.jinf.2023.02.006

      Highlights

      • Men who have sex with men using HIV pre-exposure prophylaxis often use antibiotics.
      • Oropharynx often colonised with antibiotic-resistant commensal Neisseria species.
      • Shotgun metagenomic sequencing shows high abundance of antibiotic-resistance genes.
      • Fluoroquinolones, macrolides, tetracyclines, and multidrug efflux pumps involved.
      • Stewardship should reduce antibiotic consumption in populations at risk for STI.

      Summary

      Background

      Phenotypic studies have found high levels of antimicrobial resistance to cephalosporins, macrolides and fluoroquinolones in commensal Neisseria species in the oropharynx of men who have sex with men (MSM) using HIV pre-exposure prophylaxis (PrEP). These species include Neisseria subflava and Neisseria mucosa. This may represent a risk to pathogens like Neisseria gonorrhoeae which tend to take up antibiotic resistance genes (ARGs) from other bacteria. We aimed to explore to what extent the oropharyngeal resistome of MSM using PrEP differed from the general population.

      Methods

      We collected oropharyngeal swabs from 32 individuals of the general population and from 64 MSM using PrEP. Thirty-two MSM had consumed antibiotics in the previous six months, whereas none of the other participants had. Samples underwent shotgun metagenomic sequencing. Sequencing reads were mapped against MEGARes 2.0 to estimate ARG abundance. ARG abundance was compared between groups by zero-inflated negative binomial regression.

      Findings

      ARG abundance was significantly lower in the general population than in MSM (ratio 0.41, 95% CI 0.26–0.65). More specifically, this was the case for fluoroquinolones (0.33, 95% CI 0.15–0.69), macrolides (0.37, 95% CI 0.25–0.56), tetracyclines (0.41, 95% CI 0.25–0.69), and multidrug efflux pumps (0.11, 95% CI 0.03–0.33), but not for beta-lactams (1.38, 95% CI 0.73–2.61). There were no significant differences in ARG abundance between MSM who had used antibiotics and those that had not.

      Interpretation

      The resistome of MSM using PrEP is enriched with ARGs, independent of recent antibiotic use. Stewardship campaigns should aim to reduce antibiotic consumption in populations at high risk for STIs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zhao S.
        • Duncan M.
        • Tomberg J.
        • Davies C.
        • Unemo M.
        • Nicholas R.A.
        Genetics of chromosomally mediated intermediate resistance to ceftriaxone and cefixime in Neisseria gonorrhoeae.
        Antimicrob Agents Chemother. 2009; 53: 3744-3751https://doi.org/10.1128/AAC.00304-09
        • Wadsworth C.B.
        • Arnold B.J.
        • Sater M.R.A.A.
        • Grad Y.H.
        Azithromycin Resistance through Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and Transcriptional Regulator in Neisseria gonorrhoeae.
        MBio. 2018; 9: 1-17https://doi.org/10.1128/mbio.01419-18
        • Fiore M.A.
        • Raisman J.C.
        • Wong N.H.
        • Hudson A.O.
        • Wadsworth C.B.
        Exploration of the Neisseria resistome reveals resistance mechanisms in commensals that may be acquired by N. gonorrhoeae through horizontal gene transfer.
        Antibiotics. 2020; 9: 1-12https://doi.org/10.3390/antibiotics9100656
        • Higashi D.L.
        • Biais N.
        • Weyand N.J.
        • Agellon A.
        • Sisko J.L.
        • Brown L.M.
        • et al.
        N. elongata produces type IV pili that mediate interspecies gene transfer with N. gonorrhoeae.
        PLoS One. 2011; 6https://doi.org/10.1371/journal.pone.0021373
        • Obergfell Kyle P.
        • Seifert H.S.
        Mobile DNA in the pathogenic Neisseria.
        Microbiol Spectr. 2015; 3: 451-469https://doi.org/10.1111/mec.13536.Application
        • Unemo M.
        • Shafer W.M.
        Antimicrobial resistance in Neisseria gonorrhoeae in the 21st Century: Past, evolution, and future.
        Clin Microbiol Rev. 2014; 27: 587-613https://doi.org/10.1128/CMR.00010-14
        • Olesen S.W.
        • Torrone E.A.
        • Papp J.R.
        • Kirkcaldy R.D.
        • Lipsitch M.
        • Grad Y.H.
        Azithromycin Susceptibility among Neisseria gonorrhoeae Isolates and Seasonal Macrolide Use.
        J Infect Dis. 2019; 219: 619-623https://doi.org/10.1093/infdis/jiy551
        • Olesen S.W.
        • Lipsitch M.
        • Grad Y.H.
        The role of “spillover” in antibiotic resistance.
        Proc Natl Acad Sci U S A. 2020; 117: 29063-29068https://doi.org/10.1073/pnas.2013694117
        • Oldenburg C.E.
        • Hinterwirth A.
        • Worden L.
        • Sié A.
        • Dah C.
        • Ouermi L.
        • et al.
        Indirect effect of oral azithromycin on the gut resistome of untreated children: A randomized controlled trial.
        Int Health. 2021; 13: 130-134https://doi.org/10.1093/inthealth/ihaa029
        • Lipsitch M.
        • Samore M.H.
        Antimicrobial use and antimicrobial resistance: A population perspective.
        Emerg Infect Dis. 2002; 8: 347-354https://doi.org/10.3201/eid0804.010312
        • Xiaomian L.
        • Xiaolin Q.
        • Xingzhong W.
        • Yiwen L.
        • Yuqi Y.
        • Qinghui X.
        • et al.
        Markedly Increasing Antibiotic Resistance and Dual Treatment.
        Antimicrob Agents Chemother. 2020; 66
        • Laumen J.G.E.
        • Van Dijck C.
        • Abdellati S.
        • Manoharan-Basil S.S.
        • De Baetselier I.
        • Martiny D.
        • et al.
        Markedly Reduced Azithromycin and Ceftriaxone Susceptibility in Commensal Neisseria Species in Clinical Samples from Belgian Men Who Have Sex with Men.
        Clin Infect Dis. 2021; 72: 363-364https://doi.org/10.1093/cid/ciaa565
        • Laumen J.G.E.
        • Van Dijck C.
        • Abdellati S.
        • De Baetselier I.
        • Serrano G.
        • Manoharan-Basil S.S.
        • et al.
        Antimicrobial susceptibility of commensal Neisseria in a general population and men who have sex with men in Belgium.
        Sci Rep. 2022; 12https://doi.org/10.1038/s41598-021-03995-1
        • Furuya R.
        • Onoye Y.
        • Kanayama A.
        • Saika T.
        • Iyoda T.
        • Tatewaki M.
        • et al.
        Antimicrobial resistance in clinical isolates of Neisseria subflava from the oral cavities of a Japanese population.
        J Infect Chemother. 2007; 13: 302-304https://doi.org/10.1007/s10156-007-0541-8
        • Dong H.V.
        • Pham L.Q.
        • Nguyen H.T.
        • Nguyen M.X.B.B.
        • Nguyen T.V.
        • May F.
        • et al.
        Decreased Cephalosporin Susceptibility of Oropharyngeal Neisseria Species in Antibiotic-using Men Who Have Sex With Men in Hanoi, Vietnam.
        Clin Infect Dis. 2020; 70: 1169-1175https://doi.org/10.1093/cid/ciz365
        • Lewis D.A.
        The role of core groups in the emergence and dissemination of antimicrobial resistant N. gonorrhoeae.
        Sex Transm Infect. 2014; 90: 400https://doi.org/10.1136/sextrans-2013-051020corr1
        • Kenyon C.
        • Osbak K.
        Certain attributes of the sexual ecosystem of high-risk MSM have resulted in an altered microbiome with an enhanced propensity to generate and transmit antibiotic resistance.
        Med Hypotheses. 2014; 83: 196-202https://doi.org/10.1016/j.mehy.2014.04.030
        • Kenyon C.
        • Baetselier I.D.
        • Wouters K.
        Screening for STIs in PrEP cohorts results in high levels of antimicrobial consumption.
        Int J STD AIDS. 2020; 31: 1215-1218https://doi.org/10.1177/0956462420957519
        • Vanbaelen T.
        • Van Dijck C.
        • De Baetselier I.
        • Florence E.
        • Reyniers T.
        • Vuylsteke B.
        • et al.
        Screening for STIs is one of the main drivers of macrolide consumption in PrEP users.
        Int J STD AIDS. 2021; 32: 1183-1184
        • Wright G.D.
        The antibiotic resistome: The nexus of chemical and genetic diversity.
        Nat Rev Microbiol. 2007; 5: 175-186https://doi.org/10.1038/nrmicro1614
        • Carr V.R.
        • Witherden E.A.
        • Lee S.
        • Shoaie S.
        • Mullany P.
        • Proctor G.B.
        • et al.
        Abundance and diversity of resistomes differ between healthy human oral cavities and gut.
        Nat Commun. 2020; 11: 1-10https://doi.org/10.1038/s41467-020-14422-w
        • Van Dijck C.
        • Tsoumanis A.
        • Rotsaert A.
        • Vuylsteke B.
        • Van den Bossche D.
        • Paeleman E.
        • et al.
        Antibacterial mouthwash to prevent sexually transmitted infections in men who have sex with men taking HIV pre-exposure prophylaxis (PReGo): a randomised, placebo-controlled, crossover trial.
        Lancet Infect Dis. 2021; 21: 657-667https://doi.org/10.1016/S1473-3099(20)30778-7
        • Wiehlmann L.
        • Pienkowska K.
        • Hedtfeld S.
        • Dorda M.
        • Tümmler B.
        Impact of sample processing on human airways microbial metagenomes.
        J Biotechnol. 2017; 250: 51-55https://doi.org/10.1016/j.jbiotec.2017.01.001
        • Bolger A.M.
        • Lohse M.
        • Usadel B.
        Trimmomatic: A flexible trimmer for Illumina sequence data.
        Bioinformatics. 2014; 30: 2114-2120https://doi.org/10.1093/bioinformatics/btu170
      1. Andrews S., others. FastQC: a quality control tool for high throughput sequence data. 2010. Available at 〈https://www.bioinformatics.babraham.ac.uk/Projects〉 2010.

        • Li H.
        • Durbin R.
        Fast and accurate short read alignment with Burrows-Wheeler transform.
        Bioinformatics. 2009; 25: 1754-1760https://doi.org/10.1093/bioinformatics/btp324
        • Durazzi F.
        • Sala C.
        • Castellani G.
        • Manfreda G.
        • Remondini D.
        • De Cesare A.
        Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota.
        Sci Rep. 2021; 11: 1-10https://doi.org/10.1038/s41598-021-82726-y
        • Wood D.E.
        • Lu J.
        • Langmead B.
        Improved metagenomic analysis with Kraken 2.
        Genome Biol. 2019; 20: 1-13https://doi.org/10.1186/s13059-019-1891-0
        • Lu J.
        • Breitwieser F.P.
        • Thielen P.
        • Salzberg S.L.
        Bracken: Estimating species abundance in metagenomics data.
        PeerJ Comput Sci. 2017; 2017: 1-17https://doi.org/10.7717/peerj-cs.104
        • Doster E.
        • Lakin S.M.
        • Dean C.J.
        • Wolfe C.
        • Young J.G.
        • Boucher C.
        • et al.
        MEGARes 2.0: A database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data.
        Nucleic Acids Res. 2020; 48: D561-D569https://doi.org/10.1093/nar/gkz1010
      2. Li H., Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM 2013. Doi: 〈10.48550/ARXIV.1303.3997〉.

        • Slizovskiy I.B.
        • Mukherjee K.
        • Dean C.J.
        • Boucher C.
        • Noyes N.R.
        Mobilization of Antibiotic Resistance: Are Current Approaches for Colocalizing Resistomes and Mobilomes Useful?.
        Front Microbiol. 2020; 11: 1-20https://doi.org/10.3389/fmicb.2020.01376
        • Zaheer R.
        • Noyes N.
        • Ortega Polo R.
        • Cook S.R.
        • Marinier E.
        • Van Domselaar G.
        • et al.
        Impact of sequencing depth on the characterization of the microbiome and resistome.
        Sci Rep. 2018; 8: 1-11https://doi.org/10.1038/s41598-018-24280-8
        • Chng Kern R.
        • Li C.
        • Bertrand D.
        • Ng A.H.Q.
        • Kwah J.S.
        • Low H.M.
        • et al.
        Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment.
        Nat Med. 2020; 26: 941-951https://doi.org/10.1038/s41591-020-0894-4
        • Lin H.
        • Peddada S.D.
        Analysis of compositions of microbiomes with bias correction.
        Nat Commun. 2020; 11: 1-11https://doi.org/10.1038/s41467-020-17041-7
        • Benjamini Y.
        • Hochberg Y.
        Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.
        J R Stat Soc Ser B. 1995; 57: 289-300https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
        • Friedman J.
        • Alm E.J.
        Inferring Correlation Networks from Genomic Survey Data.
        PLoS Comput Biol. 2012; 8: 1-11https://doi.org/10.1371/journal.pcbi.1002687
        • Bharucha T.
        • Oeser C.
        • Balloux F.
        • Brown J.R.
        • Carbo E.C.
        • Charlett A.
        • et al.
        STROBE-metagenomics: a STROBE extension statement to guide the reporting of metagenomics studies.
        Lancet Infect Dis. 2020; 20: e251-e260https://doi.org/10.1016/S1473-3099(20)30199-7
        • von Elm E.
        • Altman D.G.
        • Egger M.
        • Pocock S.J.
        • Gøtzsche P.C.
        • Vandenbroucke J.P.
        The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies.
        Int J Surg. 2014; 12: 1495-1499https://doi.org/10.1016/j.ijsu.2014.07.013
        • Van Dijck C.
        • Laumen J.G.E.
        • Manoharan-Basil S.S.
        • Kenyon C.
        Commensal Neisseria are shared between sexual partners: Implications for gonococcal and meningococcal antimicrobial resistance.
        Pathogens. 2020; 9: 228https://doi.org/10.3390/pathogens9030228
      3. Valles-colomer M. Blanco-míguez A., Manghi P., Asnicar F., Dubois L., Golzato D., et al. The person-to-person transmission landscape of the gut and oral microbiomes 2022. Doi: 〈10.1038/s41586-022-05620-1〉.

        • Maier L.
        • Pruteanu M.
        • Kuhn M.
        • Zeller G.
        • Telzerow A.
        • Anderson E.E.
        • et al.
        Extensive impact of non-antibiotic drugs on human gut bacteria.
        Nature. 2018; 555: 623-628https://doi.org/10.1038/nature25979
        • Fulcher J.A.
        • Hussain S.K.
        • Cook R.
        • Li F.
        • Tobin N.H.
        • Ragsdale A.
        • et al.
        Effects of Substance Use and Sex Practices on the Intestinal Microbiome during HIV-1 Infection.
        J Infect Dis. 2018; 218: 1560-1570https://doi.org/10.1093/infdis/jiy349
        • Bragazzi N.L.
        • Khamisy-Farah R.
        • Tsigalou C.
        • Mahroum N.
        HIV Pre-exposure Prophylaxis and Its Impact on the Gut Microbiome in Men Having Sex With Men.
        Front Microbiol. 2022; 13https://doi.org/10.3389/fmicb.2022.922887
        • Mazibuko-Motau N.
        • Sobia P.
        • Xu J.
        • Elsherbini J.A.
        • San J.E.
        • Lewis L.
        • et al.
        Vaginal microbial shifts are unaffected by oral pre-exposure prophylaxis in South African women.
        Sci Rep. 2022; 12: 1-8https://doi.org/10.1038/s41598-022-20486-z
        • Schwartz D.J.
        • Langdon A.E.
        • Dantas G.
        Understanding the impact of antibiotic perturbation on the human microbiome.
        Genome Med. 2020; 12: 1-12https://doi.org/10.1186/s13073-020-00782-x
        • Malhotra-Kumar S.
        • Lammens C.
        • Coenen S.
        • Van Herck K.
        • Goossens H.
        Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: a randomised, double-blind, placebo-controlled study.
        Lancet. 2007; 369: 482-490https://doi.org/10.1016/S0140-6736(07)60235-9
        • Pal C.
        • Bengtsson-Palme J.
        • Kristiansson E.
        • Larsson D.G.J.
        The structure and diversity of human, animal and environmental resistomes.
        Microbiome. 2016; 4: 15https://doi.org/10.1186/s40168-016-0199-5
        • Aogáin M.M.
        • Lau K.J.X.
        • Cai Z.
        • Narayana J.K.
        • Purbojati R.W.
        • Drautz-Moses D.I.
        • et al.
        Metagenomics reveals a core macrolide resistome related to microbiota in chronic respiratory disease.
        Am J Respir Crit Care Med. 2020; 202: 433-447https://doi.org/10.1164/rccm.201911-2202OC
        • de Block T.
        • Laumen J.G.E.
        • Van Dijck C.
        • Abdellati S.
        • Baetselier I.D.
        • Manoharan-Basil S.S.
        • et al.
        Wgs of commensal Neisseria reveals acquisition of a new ribosomal protection protein (Msrd) as a possible explanation for high level azithromycin resistance in Belgium.
        Pathogens. 2021; 10https://doi.org/10.3390/pathogens10030384
        • Harrison O.B.
        • Maiden M.C.J.
        Recent advances in understanding and combatting Neisseria gonorrhoeae: a genomic perspective.
        Fac Rev. 2021; 10https://doi.org/10.12703/r/10-65
        • Palleja A.
        • Mikkelsen K.H.
        • Forslund S.K.
        • Kashani A.
        • Allin K.H.
        • Nielsen T.
        • et al.
        Recovery of gut microbiota of healthy adults following antibiotic exposure.
        Nat Microbiol. 2018; 3: 1255-1265https://doi.org/10.1038/s41564-018-0257-9
        • Andrada A.C.
        • Azuma M.M.
        • Furusho H.
        • Hirai K.
        • Xu S.
        • White R.R.
        • et al.
        Immunomodulation Mediated by Azithromycin in Experimental Periapical Inflammation.
        J Endod. 2020; 46: 1648-1654https://doi.org/10.1016/j.joen.2020.07.028
        • Schuetz A.N.
        Antimicrobial resistance and susceptibility testing of anaerobic bacteria.
        Clin Infect Dis. 2014; 59: 698-705https://doi.org/10.1093/cid/ciu395
        • Carr A.
        • Diener C.
        • Baliga N.S.
        • Gibbons S.M.
        Use and abuse of correlation analyses in microbial ecology.
        ISME J. 2019; 13: 2647-2655https://doi.org/10.1038/s41396-019-0459-z
        • Vujkovic-Cvijin I.
        • Sklar J.
        • Jiang L.
        • Natarajan L.
        • Knight R.
        • Belkaid Y.
        Host variables confound gut microbiota studies of human disease.
        Nat 2020. 2020; (November 2019): 1-7https://doi.org/10.1038/s41586-020-2881-9
      4. Luetkemeyer A., Dombrowski J., Cohen S., Donnell D., Grabow C., Brown C., et al. Doxycycline post-exposure prophylaxis for STI prevention among MSM and transgender women on HIV PrEP or living with HIV: high efficacy to reduce incident STI’s in a randomized trial. Presented at: AIDS 2022, Montreal. n.d.;47:13231.

      5. Vanbaelen T., Reyniers T., Rotsaert A., Vuylsteke B., Florence E., Kenyon C., Prophylactic use of antibiotics for sexually transmitted infections: awareness and use among HIV PrEP users in Belgium 2022;0(0):2022. Doi: 〈10.1136/sextrans-2022-055511〉.

        • Kohli M.
        • Reid D.
        • Pulford C.V.
        • Howarth A.
        • Brown J.
        • Mohammed H.
        • et al.
        Choice of antibiotics for prophylaxis of bacterial STIs among individuals currently self-sourcing.
        Sex Transm Infect. 2022; 98: 158https://doi.org/10.1136/sextrans-2021-055310