Highlights
- •Evidence from empirical studies suggests that a range of non-pharmaceutical interventions are effective against COVID-19.
- •School closing was the most effective NPI, followed by workplace closing, business and venue closing and public event bans.
- •Public information campaigns and mask wearing requirements are less disruptive for the population and also proved to be effective.
- •There was no evidence on the effectiveness of public transport closure, testing and contact tracing strategies and quarantining or isolation of individuals.
- •Early implementation was associated with a higher effectiveness.
Abstract
Objectives
Methods
Results
Conclusions
Keywords
Introduction
Worldometers. COVID-19 Coronavirus Pandemic [Available from: https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?]
Methodology
- Moher D.
- Liberati A.
- Tetzlaff J.
- Altman D.G.
- •Assessed NPI effectiveness only in the context of COVID-19.
- •Were either observational or interventional (i.e. quasi-experimental or experimental) studies of empirical data.
- •Included at least one of the following NPIs, as described and categorised in the Oxford COVID-19 Government Response Tracker (OxCGRT):11school closing, workplace closing, public event cancelation, social gathering restrictions, public transport closure, stay-at-home requirements, internal movement restrictions, international travel restrictions, public information campaigns, testing policies, contact tracing policies and facial covering policies.
- •Compared the effectiveness of at least two NPIs.
- •Analysed NPI effectiveness in the general population of any geographical area.
- •Measured any health outcome.
- •Were based on forecasts or simulations.
- •Did not assess the direct link between NPIs and the health outcome (for example, if the link was based on mobility).
- •Analysed the impact of adherence or compliance to NPIs.
- •Did not pre-specify the NPIs explored before the analysis (for example, breaking point analysis of epidemic curves were excluded).
Results

Methodological characteristics of the studies
Authors and outcome(s) assessed | Setting | NPIs studied |
---|---|---|
Banholzer et al. (a) 24
Impact of non-pharmaceutical interventions on documented cases of COVID-19. MedRxiv. 2020; https://doi.org/10.1101/2020.04.16.20062141 Confirmed cases | 20 countries: 15 EU countries, USA, Canada, Australia, Norway and Switzerland | (1) School closing / (2) Border closures / (3) Public event bans / (4) Gathering bans / (5) Venue closing / (6) Lockdowns prohibiting public movements without valid reason / (7) Work bans on non-essential business activities |
Banholzer et al. (b) 25
Estimating the effects of non-pharmaceutical interventions on the number of new infections with COVID-19 during the first epidemic wave. PLoS ONE. 2021; 16https://doi.org/10.1371/journal.pone.0252827 Confirmed cases | 20 countries: 15 EU countries, USA, Canada, Australia, Norway and Switzerland | (1) School closing / (2) Border closures / (3) Public event bans / (4) Gathering bans / (5) Venue closing / (6) Lockdowns prohibiting public movements without valid reason / (7) Work bans on non-essential business activities |
Bo et al. 17 Reproduction number | Worldwide, 190 countries | (1) Mandatory face mask in public / (2) Isolation or quarantine (3) Social distancing / (4) Traffic restrictions |
Brauner et al. 30
Inferring the effectiveness of government interventions against COVID-19. Science. 2020; 371 (New York, NY)https://doi.org/10.1126/science.abd9338 Reproduction number | Worldwide, 41 countries: 34 European and 7 non-European | (1–3) Gatherings limited to 1000/100/10 people or less / (4–5) Some/ All but essential shops closed / (6–7) Schools or universities closed / (8) Stay-at-home orders with exemptions |
Chaudhry et al. 46
A country level analysis measuring the impact of government actions, country preparedness and socioeconomic factors on COVID-19 mortality and related health outcomes. EClinicalMed. 2020; 25https://doi.org/10.1016/j.eclinm.2020.100464 Confirmed cases, recovered cases, critical cases and deaths per million | Worldwide, 50 countries | (1) Travel restrictions: None/ Partial/ Complete border closure / (2) Containment measures: None/ Partial / Complete lockdown / (3) Curfew implemented (stay-at-home orders limited to specific hours) |
Chernozhukov et al. 39 Cases and deaths growth rate | USA, all states | (1) Stay at-home / (2) Closed nonessential businesses / (3) Closed K-12 schools / (4) Face mask mandates for employees in public facing businesses |
Courtemanche et al. 42 Cases growth rate | USA, 3138 counties | (1) Shelter-in-place orders / (2) Public school closing / (3) Bans on large social gatherings / (4) Closures of entertainment-related businesses |
Deb et al. 32 Confirmed cases and deaths | Worldwide, 129 countries | (1) School closing / (2) Workplace closing / (3) Public event cancellations / (4) Gathering restrictions / (5) Public transportation closures / (6) Stay-at-home orders / (7) Restrictions on internal movement / (8) International travel bans |
Dreher et al. 40 Reproduction number and case fatality rate | USA, all states | (1) Stay-at-home orders / (2) Educational facilities closure / (3) Non-essential business closure / (4) Limitations on mass gatherings |
Duhon et al. 21
The impact of non-pharmaceutical interventions, demographic, social, and climatic factors on the initial growth rate of COVID-19: a cross-country study. Sci Total Environ. 2021; 760https://doi.org/10.1016/j.scitotenv.2020.144325 Case growth rate | Worldwide, unclear number of territories | (1) School closing / (2) Workplace closing / (3) Cancellation of public events / (4) Restrictions on gatherings / (5) Public transit closures / (6) Stay-at-home requirements / (7) Restrictions on internal movement / (8) International travel controls |
Ebrahim et al. 22 Case growth rate and reproduction number | USA, 1320 counties | (1) Closure of nonessential workplaces / (2) Shelter-in-place/stay-at-home orders / (3) Enforcement of shelter-in-place or stay-at-home / (4) Size restrictions on public gatherings / (5) School closing / (6) Public transport closures / (7) Publicly available testing |
Esra et al. 27
Evaluating the impact of non-pharmaceutical interventions for SARS-CoV-2 on a global scale. MedRxiv. 2020; https://doi.org/10.1101/2020.07.30.20164939 Reproduction number | Worldwide, 26 countries and 34 US states | (1) Quarantine and isolation policies / (2) Limits on gatherings / (3) School closing (primary, secondary and tertiary educational institutions) / (4) Mask policies / (5) Household confinements (stay-at-home-orders, shelter-in-place orders and lockdowns) |
Flaxman et al. 29 Reproduction number | Europe, 11 countries | (1) Lockdown / (2) Cancel public events / (3) School closing / (4) Self-isolation / (5) Social distancing encouraged |
Fountoulakis et al. 28 Death rate | Europe, 40 countries | (1) School closing / (2) Workplace closing / (3) Public events ban / (4) Gathering ban / (5) Public transport closure / (6) Lockdown implementation / (7) Domestic travel ban / (8) International travel ban |
Haug et al. 47 Reproduction number | Worldwide, 79 territories, 56 countries | Different categories of NPIs in their hierarchical levels (42,151 measures) |
Hsiang et al. 15 Case growth rate | China, South Korea, Italy, Iran, France, US | (1) Restricting travel / (2) Social distancing / (3) Quarantine and lockdown / (4) Additional policies |
Hunter et al. 44
Impact of non-pharmaceutical interventions against COVID-19 in Europe: a quasi-experimental study. MedRxiv. 2020; https://doi.org/10.1101/2020.05.01.20088260 Incident risk ratio of NPIs on the number of cases and deaths | Europe, 30 countries | (1) Mass gathering restrictions / (2) Initial business closure / (3) Educational facilities closed / (4) Non-essential services closed / (5) Stay-at-home order / (6) Travel severely limited - none European country |
Islam et al. 33
Physical distancing interventions and incidence of coronavirus disease 2019: natural experiment in 149 countries. BMJ. 2020; 370https://doi.org/10.1136/bmj.m2743 Incidence rate ratio | Worldwide, 149 countries | (1) Closures of schools / (2) Workplace / (3) Public transport / (4) Restrictions on mass gatherings and public events / (5) Restrictions on movement (stay-at-home regulations and restrictions on movements within a country) |
Jalali et al. 43
Delayed interventions, low compliance, and health disparities amplified the early spread of COVID-19. MedRxiv. 2020; https://doi.org/10.1101/2020.07.31.20165654 Case rates, mortality rates and case-fatality rates | USA, 30 most populous counties and 10 most populous counties of CA, FL, NY and TX | 3 broad categories: (1) Restrictions on mass gatherings / (2) Stay-at-home orders / (3) Face mask requirements |
Jüni et al. 16 Epidemic growth | Worldwide, 144 territories, (not China, South Korea, Iran, Italy) | (1) School closing / (2) Restrictions of mass gatherings / (3) Measures of social distancing |
Koh et al. 34 Reproduction number | Worldwide, 142 countries | (1) International travel controls (including screening, quarantine and bans on international movement) / (2) Restrictions on mass gatherings (including public event bans and size restrictions on gatherings) / (3) Lockdown-type measures (including workplace closure, internal movement restrictions) |
Leffler et al. 35 Mortality | Worldwide, 200 countries | (1) School closing / (2) Workplace closing / (3) Cancel public events / (4) estrictions on gatherings / (5) Close public transport / (6) Stay-at-home requirements / (7) Internal movement restrictions / (8) International travel restrictions / (9) Income support / (10) Public information campaigns / (11) Testing policy / (12) Contact tracing policy / (13) Public wearing of masks |
Li et al. (a) 23 Reproduction number | Worldwide, 131 countries | (1) Closure of schools / (2) Closure of workplaces / (3) Public events bans / (4) Restrictions on the size of gatherings / (5) Closure of public transport / (6) Stay-at-home orders / (7) Restrictions on internal movement / (8) Restrictions on international travel |
Li et al. (b) 26 Case growth rate and death case growth rate | USA, all states | (1) School closing / (2) Workplace closures / (3) Public event cancellations / (4) Public information campaigns / (5) Public transport closures / (6) Stay-at-home orders / (7) International/national travel controls |
Liu et al. 36 Reproduction number | Worldwide, 130 countries | (1) Internal containment and closure (School and workplace closure, public event cancelation, limits on gathering sizes, public transport closure, stay-at-home requirement, internal movement restriction) / (2) International travel restrictions / (3) Economic policies / (4) Health systems policies (Public information campaign, testing policy, contact tracing) |
Olney et al. 31
Estimating the effect of social distancing interventions on COVID-19 in the United States. Am J Epidemiol. 2021; https://doi.org/10.1093/aje/kwaa293 Reproduction number | USA, all states | (1) Social distancing encouraged / (2) Schools or universities closing / (3) Public events (ban for more than 100 people)/ (4) Lockdown / (5) Self-isolating ill / (6) Sports (public event ban of more than 1000 people) |
Papadopoulos et al. 37
The impact of lockdown measures on COVID-19: a worldwide comparison. MedRxiv. 2020; https://doi.org/10.1101/2020.05.22.20106476 Total cases and total deaths | Worlwide, 137 countries | (1) School closing / (2) Workplace closing / (3) Cancelling of public events / (4) Restriction on gatherings / (5) Closure of public transport / (6) Stay-at-home restrictions / (7) Domestic travel restrictions / (8) International travel restrictions / (9) Public information / (10) Testing framework / (11) Contact tracing |
Piovani et al. 45 Mortality | OECD countries | (1) Mass gathering ban (more than 1000 people) / (2) School closures |
Pozo-Martin et al. 19
The impact of non-pharmaceutical interventions on COVID-19 epidemic growth in the 37 OECD member states. Eur J Epidemiol. 2021; https://doi.org/10.1007/s10654-021-00766-0 Case growth rate | OECD countries | (1) School closing requirements / (2) Workplace closing requirements / (3) Public events cancelling requirements / (4) Restrictions on gatherings / (5) Public transport restrictions / (6) Stay-at-home requirements / (7) Restrictions on internal travel / (8) International travel controls / (9) Public health information campaigns / (10) Mask wearing requirements / (11) Testing policy / (12) Contact tracing policy |
Siedner et al. 41
Social distancing to slow the US COVID-19 epidemic: longitudinal pretest-posttest comparison group study. PLoS Med. 2020; 17https://doi.org/10.1371/journal.pmed.1003244 Case growth rate and deaths growth rate | USA, all states | (1) Social distancing measures (closures of schools, closures of workplaces, cancellations of public events, restrictions on internal movement, closures of state borders) / (2) Internal movement restrictions (shelter-in-place orders, lockdowns) |
Stokes et al. 49
The relative effects of non-pharmaceutical interventions on early COVID-19 mortality: natural experiment in 130 countries. MedRxiv. 2020; https://doi.org/10.1101/2020.10.05.20206888 Mortality rate | Worldwide, 130 countries | (1) School closing / (2) Workplace closing / (3) Public event cancelling / (4) Gathering restrictions / (5) Public transport closure / (6) Stay-at-home requirements / (7) Restrictions on internal movement / (8) International travel controls / (9) Public information campaigns |
Wibbens et al. 18 Case growth rate | 40 territories: 17 countries and 23 US states | (1) Closing of schools / (2) Closing of workplaces / (3) Public event cancelling / (4) Gathering bans / (5) Public transport closure / (6) Shelter-in-place orders and home confinement / (7) Restrictions on internal movement / (8) Restrictions on international travel / (9) Public information campaigns / (10) Testing access / (11) Contact tracing |
Wong et al. 38 Cumulative incidence | Worldwide, 139 countries | (1) School closure / (2) Workplace closure / (3) Public event cancelation / (4) Restrictions on gathering size / (5) Public transport closure / (6) Staying at home requirements / (7) Internal movement restrictions / (8) International travel restrictions / (9) Public information campaigns |
Zhang et al. 20 Case growth rate | USA, all states | (1) Implementation of shutdowns / (2) Mask mandates |
Study type, timeframe and geographical scope
- Pozo-Martin F.
- Weishaar H.
- Cristea F.
- Hanefeld J.
- Bahr T.
- Schaade L.
- et al.
- Duhon J.
- Bragazzi N.
- Kong J.D.
- Banholzer N.
- van Weenen E.
- Kratzwald B.
- Banholzer N.
- van Weenen E.
- Lison A.
- Esra R.
- Jamieson L.
- Fox M.P.
- Letswalo D.
- Brauner J.M.
- Mindermann S.
- Sharma M.
- Johnston D.
- Salvatier J.
- Gavenčiak T.
- et al.
- Olney A.M.
- Smith J.
- Sen S.
- Thomas F.
- Unwin H.J.T.
- Duhon J.
- Bragazzi N.
- Kong J.D.
- Islam N.
- Sharp S.J.
- Chowell G.
- Shabnam S.
- Kawachi I.
- Lacey B.
- et al.
- Papadopoulos D.I.
- Donkov I.
- Charitopoulos K.
- Stokes J.
- Turner A.J.
- Anselmi L.
- Morciano M.
- Hone T.
- Olney A.M.
- Smith J.
- Sen S.
- Thomas F.
- Unwin H.J.T.
- Siedner M.J.
- Harling G.
- Reynolds Z.
- Gilbert R.F.
- Haneuse S.
- Venkataramani A.S.
- et al.
- Jalali A.M.
- Khoury S.G.
- See J.
- Gulsvig A.M.
- Hunter P.
- Colón-González F.
- Brainard J.
- Pozo-Martin F.
- Weishaar H.
- Cristea F.
- Hanefeld J.
- Bahr T.
- Schaade L.
- et al.
- Banholzer N.
- van Weenen E.
- Kratzwald B.
- Banholzer N.
- van Weenen E.
- Lison A.
- Brauner J.M.
- Mindermann S.
- Sharma M.
- Johnston D.
- Salvatier J.
- Gavenčiak T.
- et al.
- Chaudhry R.
- Dranitsaris G.
- Mubashir T.
- Bartoszko J.
- Riazi S.
- Esra R.
- Jamieson L.
- Fox M.P.
- Letswalo D.
Outcomes of interest
- Thompson R.N.
- Stockwin J.E.
- van Gaalen R.D.
- Polonsky J.A.
- Kamvar Z.N.
- Demarsh P.A.
- et al.
NPIs assessed
Statistical methodology
- Pozo-Martin F.
- Weishaar H.
- Cristea F.
- Hanefeld J.
- Bahr T.
- Schaade L.
- et al.
- Banholzer N.
- van Weenen E.
- Kratzwald B.
- Banholzer N.
- van Weenen E.
- Lison A.
- Brauner J.M.
- Mindermann S.
- Sharma M.
- Johnston D.
- Salvatier J.
- Gavenčiak T.
- et al.
- Olney A.M.
- Smith J.
- Sen S.
- Thomas F.
- Unwin H.J.T.
- Duhon J.
- Bragazzi N.
- Kong J.D.
- Stokes J.
- Turner A.J.
- Anselmi L.
- Morciano M.
- Hone T.
- Papadopoulos D.I.
- Donkov I.
- Charitopoulos K.
- Jalali A.M.
- Khoury S.G.
- See J.
- Gulsvig A.M.
Risk of bias analysis
Results of the studies
Results on the reproduction number, epidemic growth and incidence-related outcomes
- Pozo-Martin F.
- Weishaar H.
- Cristea F.
- Hanefeld J.
- Bahr T.
- Schaade L.
- et al.

Most effective interventions
- Hunter P.
- Colón-González F.
- Brainard J.
- Brauner J.M.
- Mindermann S.
- Sharma M.
- Johnston D.
- Salvatier J.
- Gavenčiak T.
- et al.
- Olney A.M.
- Smith J.
- Sen S.
- Thomas F.
- Unwin H.J.T.
- Islam N.
- Sharp S.J.
- Chowell G.
- Shabnam S.
- Kawachi I.
- Lacey B.
- et al.
- Brauner J.M.
- Mindermann S.
- Sharma M.
- Johnston D.
- Salvatier J.
- Gavenčiak T.
- et al.
- Pozo-Martin F.
- Weishaar H.
- Cristea F.
- Hanefeld J.
- Bahr T.
- Schaade L.
- et al.
- Banholzer N.
- van Weenen E.
- Kratzwald B.
- Brauner J.M.
- Mindermann S.
- Sharma M.
- Johnston D.
- Salvatier J.
- Gavenčiak T.
- et al.
- Islam N.
- Sharp S.J.
- Chowell G.
- Shabnam S.
- Kawachi I.
- Lacey B.
- et al.
Intermediate effectiveness interventions
- Esra R.
- Jamieson L.
- Fox M.P.
- Letswalo D.
- Olney A.M.
- Smith J.
- Sen S.
- Thomas F.
- Unwin H.J.T.
- Brauner J.M.
- Mindermann S.
- Sharma M.
- Johnston D.
- Salvatier J.
- Gavenčiak T.
- et al.
- Islam N.
- Sharp S.J.
- Chowell G.
- Shabnam S.
- Kawachi I.
- Lacey B.
- et al.
- Papadopoulos D.I.
- Donkov I.
- Charitopoulos K.
- Banholzer N.
- van Weenen E.
- Kratzwald B.
- Banholzer N.
- van Weenen E.
- Lison A.
- Brauner J.M.
- Mindermann S.
- Sharma M.
- Johnston D.
- Salvatier J.
- Gavenčiak T.
- et al.
- Brauner J.M.
- Mindermann S.
- Sharma M.
- Johnston D.
- Salvatier J.
- Gavenčiak T.
- et al.
- Banholzer N.
- van Weenen E.
- Kratzwald B.
- Siedner M.J.
- Harling G.
- Reynolds Z.
- Gilbert R.F.
- Haneuse S.
- Venkataramani A.S.
- et al.
- Siedner M.J.
- Harling G.
- Reynolds Z.
- Gilbert R.F.
- Haneuse S.
- Venkataramani A.S.
- et al.
- Papadopoulos D.I.
- Donkov I.
- Charitopoulos K.
- Pozo-Martin F.
- Weishaar H.
- Cristea F.
- Hanefeld J.
- Bahr T.
- Schaade L.
- et al.
- Esra R.
- Jamieson L.
- Fox M.P.
- Letswalo D.
Least effective interventions
- Pozo-Martin F.
- Weishaar H.
- Cristea F.
- Hanefeld J.
- Bahr T.
- Schaade L.
- et al.
Results on mortality and death-related outcomes

- Stokes J.
- Turner A.J.
- Anselmi L.
- Morciano M.
- Hone T.
- Hunter P.
- Colón-González F.
- Brainard J.
- Chaudhry R.
- Dranitsaris G.
- Mubashir T.
- Bartoszko J.
- Riazi S.
- Hunter P.
- Colón-González F.
- Brainard J.
- Papadopoulos D.I.
- Donkov I.
- Charitopoulos K.
- Papadopoulos D.I.
- Donkov I.
- Charitopoulos K.
Dose-response effect of NPIs
- Hunter P.
- Colón-González F.
- Brainard J.
- Brauner J.M.
- Mindermann S.
- Sharma M.
- Johnston D.
- Salvatier J.
- Gavenčiak T.
- et al.
- Pozo-Martin F.
- Weishaar H.
- Cristea F.
- Hanefeld J.
- Bahr T.
- Schaade L.
- et al.
- Pozo-Martin F.
- Weishaar H.
- Cristea F.
- Hanefeld J.
- Bahr T.
- Schaade L.
- et al.
- Pozo-Martin F.
- Weishaar H.
- Cristea F.
- Hanefeld J.
- Bahr T.
- Schaade L.
- et al.
- Papadopoulos D.I.
- Donkov I.
- Charitopoulos K.
- Stokes J.
- Turner A.J.
- Anselmi L.
- Morciano M.
- Hone T.
Timeliness of implementation
- Chaudhry R.
- Dranitsaris G.
- Mubashir T.
- Bartoszko J.
- Riazi S.
- Islam N.
- Sharp S.J.
- Chowell G.
- Shabnam S.
- Kawachi I.
- Lacey B.
- et al.
- Jalali A.M.
- Khoury S.G.
- See J.
- Gulsvig A.M.
- Papadopoulos D.I.
- Donkov I.
- Charitopoulos K.
- Pozo-Martin F.
- Weishaar H.
- Cristea F.
- Hanefeld J.
- Bahr T.
- Schaade L.
- et al.
- Papadopoulos D.I.
- Donkov I.
- Charitopoulos K.
- Stokes J.
- Turner A.J.
- Anselmi L.
- Morciano M.
- Hone T.
- Papadopoulos D.I.
- Donkov I.
- Charitopoulos K.
Effect of number of NPIs
- Islam N.
- Sharp S.J.
- Chowell G.
- Shabnam S.
- Kawachi I.
- Lacey B.
- et al.
Discussion
- Walsh S.
- Chowdury A.
- Braithwaite V.
- Russell S.
- Birch J.
- Ward J.
- et al.
- Abdollahi E.
- Haworth-Brockman M.
- Keynan Y.
- Langley J.M.
- Moghadas S.M.
- Klimek-Tulwin M.
- Tulwin T.
- Walsh S.
- Chowdury A.
- Braithwaite V.
- Russell S.
- Birch J.
- Ward J.
- et al.
- Stage H.B.
- Shingleton J.
- Ghosh S.
- Scarabel F.
- Pellis L.
- Finnie T.
- Stage H.B.
- Shingleton J.
- Ghosh S.
- Scarabel F.
- Pellis L.
- Finnie T.
BBC. COVID: When will the children return to school and what are the rules? [Available from: https://www.bbc.com/news/education-51643556].
OurWorldInData. Daily confirmed COVID-19 cases in the UK [Available from: https://ourworldindata.org/coronavirus-data?country=~GBR.
J. Bailey Is it safe to reopen schools? An extensive review of the research. Available at: https://www.crpe.org/sites/default/files/3-12_is_it_safe_to_reopen_schools_an_extensive_review_of_the_research_1.pdf. 2021.
- Streeck H.
- Schulte B.
- Kümmerer B.M.
- Richter E.
- Höller T.
- Fuhrmann C.
- et al.
- Lee V.J.
- Chiew C.J.
- Khong W.X.
- Pozo-Martin F.
- Weishaar H.
- Cristea F.
- Hanefeld J.
- Bahr T.
- Schaade L.
- et al.
- Wei C.
- Lee C.C.
- Hsu T.C.
- Hsu W.T.
- Chan C.C.
- Chen S.C.
- et al.
- Howard J.
- Huang A.
- Li Z.
- Tufekci Z.
- Zdimal V.
- van der Westhuizen H.-.M.
- et al.
- Sharma M.
- Mindermann S.
- Rogers-Smith C.
- Leech G.
- Snodin B.
- Ahuja J.
- et al.
- Ge Y.
- Zhang W.B.
- Liu H.
- Ruktanonchai C.W.
- Hu M.
- Wu X.
- et al.
- Sharma M.
- Mindermann S.
- Rogers-Smith C.
- Leech G.
- Snodin B.
- Ahuja J.
- et al.
- Ge Y.
- Zhang W.B.
- Liu H.
- Ruktanonchai C.W.
- Hu M.
- Wu X.
- et al.
- Thompson R.N.
- Stockwin J.E.
- van Gaalen R.D.
- Polonsky J.A.
- Kamvar Z.N.
- Demarsh P.A.
- et al.
- Teslya A.
- Pham T.M.
- Godijk N.G.
- Kretzschmar M.E.
- Bootsma M.C.J.
- Rozhnova G.
- Kasting M.L.
- Head K.J.
- Hartsock J.A.
- Sturm L.
- Zimet G.D.
- Kantor B.N.
- Kantor J.
Declaration of Competing Interest
Acknowledgments
Appendix. Supplementary materials
References
- Stop the Wuhan virus.Nature. 2020; 577: 450https://doi.org/10.1038/d41586-020-00153-x
Worldometers. COVID-19 Coronavirus Pandemic [Available from: https://www.worldometers.info/coronavirus/?utm_campaign=homeAdvegas1?]
- Effect of non-pharmaceutical interventions to contain COVID-19 in China.Nature. 2020; 585: 410-413https://doi.org/10.1038/s41586-020-2293-x
- Effect of the social distancing measures on the spread of COVID-19 in 10 highly infected countries.Sci Total Environ. 2020; : 742https://doi.org/10.1016/j.scitotenv.2020.140430
- Covid-19 epidemic in Italy: evolution, projections and impact of government measures.Eur J Epidemiol. 2020; 35: 341-345https://doi.org/10.1007/s10654-020-00631-6
- Estimating worldwide effects of non-pharmaceutical interventions on COVID-19 incidence and population mobility patterns using a multiple-event study.Sci Rep. 2021; 11: 1972https://doi.org/10.1038/s41598-021-81442-x
- The socio-economic implications of the coronavirus pandemic (COVID-19): a review.Int J Surg. 2020; 78: 185-193https://doi.org/10.1016/j.ijsu.2020.04.018
- Working in a pandemic: exploring the impact of COVID-19 health anxiety on work, family, and health outcomes.J Appl Psychol. 2020; 105: 1234-1245https://doi.org/10.1037/apl0000739
- Comparing nonpharmaceutical interventions for containing emerging epidemics.Proc Natl Acad Sci. 2017; 114 (U S A.): 4023-4028https://doi.org/10.1073/pnas.1616438114
- Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.PLoS Med. 2009; 6e1000097https://doi.org/10.1371/journal.pmed.1000097
- A global panel database of pandemic policies (Oxford COVID-19 government response tracker).Nat Hum Behav. 2021; 5: 529-538https://doi.org/10.1038/s41562-021-01079-8
- The quality of modern cross-sectional ecologic studies: a bibliometric review.Am J Epidemiol. 2011; 174: 1101-1107https://doi.org/10.1093/aje/kwr241