Tobacco smoking and meningococcal disease in adolescents and young adults: a systematic review and meta-analysis

  • Ellie K Pilat
    Correspondence
    Corresponding author.
    Affiliations
    Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, United Kingdom
    Search for articles by this author
  • James M Stuart
    Affiliations
    Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, United Kingdom
    Search for articles by this author
  • Clare E French
    Affiliations
    Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, United Kingdom

    NIHR Health Protection Research Unit in Behavioural Science and Evaluation at University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, United Kingdom
    Search for articles by this author
Published:February 17, 2021DOI:https://doi.org/10.1016/j.jinf.2021.02.018

      Highlights

      • Invasive meningococcal disease (IMD) is a significant cause of morbidity and mortality worldwide.
      • Smoking is linked to meningococcal carriage and passive smoking to IMD in children.
      • We conducted a systematic review searching multiple electronic databases.
      • Active and passive smoking may be associated with IMD in adolescents and young adults.
      • Smoking cessation may reduce transmission and disease incidence in all age groups.

      Summary

      Objectives

      Systematically review the evidence on the association between active and passive tobacco smoking and invasive meningococcal disease (IMD) in adolescents and young adults aged 15-to-24-years.

      Methods

      Electronic searches were conducted in Ovid MEDLINE, EMBASE, and Web of Science to June 2020. Reference lists were hand-searched. Two independent reviewers screened articles for eligibility. Risk of bias was assessed using an adapted Risk of Bias in Non-Randomised Studies - of Interventions tool. Meta-analyses were conducted using random-effects models.

      Results

      Of 312 records identified, 13 studies were included. Five studies provided data on the association between active smoking and IMD in the target age group; pooled odds ratio (OR): 1.45 (95% CI: 0.93–2.26). The overall OR, including eight studies with a wider participant age range, was 1.45 (95% CI: 1.12–1.88). For passive smoking, the equivalent ORs were 1.56 (95% CI: 1.09–2.25) and 1.30 (95% CI: 1.06–1.59) respectively. All studies were at high risk of bias.

      Conclusions

      Active and passive smoking may be associated with IMD in adolescents and young adults. Since active smoking has also been linked to meningococcal carriage, and passive smoking to IMD in young children, smoking cessation should be encouraged to reduce transmission and IMD risk in all ages.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Journal of Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cartwright K.A.
        • Stuart J.M.
        • Jones D.M.
        • Noah N.D.
        The Stonehouse survey: nasopharyngeal carriage of meningococci and Neisseria lactamica.
        Epidemiol Infect. 1987; 99: 591-601https://doi.org/10.1017/S0950268800066449
        • Ladhani S.N.
        • Flood J.S.
        • Ramsay M.E.
        • Campbell H.
        • Gray S.J.
        • Kaczmarski E.B.
        • et al.
        Invasive meningococcal disease in England and Wales: implications for the introduction of new vaccines.
        Vaccine. 2012; 30: 3710-3716https://doi.org/10.1016/j.vaccine.2012.03.011
        • Borrow R.
        • Alarcón P.
        • Carlos J.
        • Caugant D.A.
        • Christensen H.
        • Debbag R.
        • et al.
        The global meningococcal initiative: global epidemiology, the impact of vaccines on meningococcal disease and the importance of herd protection.
        Expert Rev Vaccines. 2017; 16: 313-328https://doi.org/10.1080/14760584.2017.1258308
        • Jafri R.Z.
        • Ali A.
        • Messonnier N.E.
        • Tevi-Benissan C.
        • Durrheim D.
        • Eskola J.
        • et al.
        Global epidemiology of invasive meningococcal disease.
        Popul Health Metr. 2013; 11: 17https://doi.org/10.1186/1478-7954-11-17
        • Lecture Gr.B.Manson
        Meningococcal meningitis in Africa.
        Trans R Soc Trop Med Hyg. 1999; 93: 341-353https://doi.org/10.1016/S0035-9203(99)90106-2
        • Whittaker R.
        • Dias J.G.
        • Ramliden M.
        • Ködmön C.
        • Economopoulou A.
        • Beer N.
        • et al.
        The epidemiology of invasive meningococcal disease in EU/EEA countries, 2004-2014.
        Vaccine. 2017; 35: 2034-2041https://doi.org/10.1016/j.vaccine.2017.03.007
        • Ladhani S.N.
        • Borrow R.
        • Andrews N.J.
        Growing evidence supports 4CMenB effectiveness.
        Lancet Infect Dis. 2018; 18: 370-371https://doi.org/10.1016/S1473-3099(18)30051-3
        • Marshall H.S.
        • McMillan M.
        • Koehler A.P.
        • Lawrence A.
        • Sullivan T.R.
        • MacLennan J.M.
        • et al.
        Meningococcal B vaccine and meningococcal carriage in adolescents in Australia.
        N Engl J Med. 2020; 382: 318-327https://doi.org/10.1056/NEJMoa1900236
        • MacLennan J.
        • Kafatos G.
        • Neal K.
        • Andrews N.
        • Cameron J.
        • Roberts R.
        • et al.
        Social behavior and meningococcal carriage in British teenagers.
        Emerg Infect Dis. 2006; 12: 950-957https://doi.org/10.3201/eid1206.051297
        • Peterson M.E.
        • Mile R.
        • Li Y.
        • Nair H.
        • Kyaw M.H.
        Meningococcal carriage in high-risk settings: a systematic review.
        Int J Infect Dis. 2018; 73: 109-117https://doi.org/10.1016/j.ijid.2018.05.022
        • Stuart J.M.
        • Robinson P.M.
        • Cartwright K.A.V.
        • Noah N.D.
        Effect of smoking on meningococcal carriage.
        Lancet. 1989; 334: 723-725https://doi.org/10.1016/S0140-6736(89)90781-2
        • Lee C.-.C.
        • Middaugh N.A.
        • Howie S.R.C.
        • Ezzati M.
        Association of secondhand smoke exposure with pediatric invasive bacterial disease and bacterial carriage: a systematic review and meta-analysis.
        PLoS Med. 2010; 7e1000374https://doi.org/10.1371/journal.pmed.1000374
        • Murray R.L.
        • Britton J.
        • Leonardi-Bee J.
        Second hand smoke exposure and the risk of invasive meningococcal disease in children: systematic review and meta-analysis.
        BMC Public Health. 2012; 12: 1062https://doi.org/10.1186/1471-2458-12-1062
        • Brathwaite R.
        • Addo J.
        • Smeeth L.
        • Lock K.
        A systematic review of tobacco smoking prevalence and description of tobacco control strategies in sub-saharan African countries; 2007 to 2014.
        PLoS One. 2015; 10e0132401https://doi.org/10.1371/journal.pone.0132401
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        BMJ. 2009; 339: b2535https://doi.org/10.1136/bmj.b2535
        • Parikh S.R.
        • Campbell H.
        • Bettinger J.A.
        • Harrison L.H.
        • Marshall H.S.
        • Martinon-Torres F.
        • et al.
        The everchanging epidemiology of meningococcal disease worldwide and the potential for prevention through vaccination.
        J Infect. 2020; 81: 483-498https://doi.org/10.1016/j.jinf.2020.05.079
        • Altman D.G.
        • Bland J.M.
        How to obtain the confidence interval from a P value.
        BMJ. 2011; 343: d2090https://doi.org/10.1136/bmj.d2090
        • Sterne J.A.C.
        • Hernán M.A.
        • Reeves B.C.
        • Savović J.
        • Berkman N.D.
        • Viswanathan M.
        • et al.
        ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions.
        BMJ. 2016; 355: i4919https://doi.org/10.1136/bmj.i4919
        • McGuinness L.A.
        • Higgins J.P.T.
        Risk-of-bias VISualization (robvis): an R package and Shiny web app for visualizing risk-of-bias assessments.
        Res Synth Methods. 2020; https://doi.org/10.1002/jrsm.1411
        • Ridpath A.
        • Greene S.K.
        • Robinson B.F.
        • Weiss D.
        Risk factors for serogroup C meningococcal disease during outbreak among men who have sex with men, New York City, New York, USA.
        Emerg Infect Dis. 2015; 21: 1458-1461https://doi.org/10.3201/eid2108.141932
        • Fischer M.
        • Hedberg K.
        • Cardosi P.
        • Plikaytis B.D.
        • Hoesly F.C.
        • Steingart K.R.
        • et al.
        Tobacco smoke as a risk factor for meningococcal disease.
        Pediatr Infect Dis J. 1997; 16: 979-983https://doi.org/10.1097/00006454-199710000-00015
        • Imrey P.B.
        • Jackson L.A.
        • Ludwinski P.H.
        • England A.C.
        • Fella G.A.
        • Fox B.C.
        • et al.
        Outbreak of serogroup C meningococcal disease associated with campus bar patronage.
        Am J Epidemiol. 1996; 143: 624-630https://doi.org/10.1093/oxfordjournals.aje.a008792
        • McCall B.J.
        • Neill A.S.
        • Young M.M.
        Risk factors for invasive meningococcal disease in southern Queensland, 2000–2001.
        Intern Med J. 2004; 34: 464-468https://doi.org/10.1111/j.1445-5994.2004.00564.x
        • Robinson P.
        • Taylor K.
        • Nolan T.
        Risk-factors for meningococcal disease in Victoria, Australia, in 1997.
        Epidemiol Infect. 2001; 127: 261-268https://doi.org/10.1017/S0950268801005696
        • Tully J.
        • Viner R.M.
        • Coen P.G.
        • Stuart J.M.
        • Zambon M.
        • Peckham C.
        • et al.
        Risk and protective factors for meningococcal disease in adolescents: matched cohort study.
        BMJ. 2006; 332: 445https://doi.org/10.1136/bmj.38725.728472.BE
        • Harrison L.H.
        • Kreiner C.J.
        • Shutt K.A.
        • Messonnier N.E.
        • O'Leary M.
        • Stefonek K.R.
        • et al.
        Risk factors for meningococcal disease in students in grades 9-12.
        Pediatr Infect Dis J. 2008; 27: 193-199https://doi.org/10.1097/inf.0b013e31815c1b3a
        • Arcavi L.
        • Benowitz N.L.
        Cigarette smoking and infection.
        Arch Intern Med. 2004; 164: 2206-2216https://doi.org/10.1001/archinte.164.20.2206
        • Coen P.G.
        • Tully J.
        • Stuart J.M.
        • Ashby D.
        • Viner R.M.
        • Booy R.
        Is it exposure to cigarette smoke or to smokers which increases the risk of meningococcal disease in teenagers?.
        Int J Epidemiol. 2006; 35: 330-336https://doi.org/10.1093/ije/dyi295
        • Nuorti J.P.
        • Butler J.C.
        • Farley M.M.
        • Harrison L.H.
        • McGeer A.
        • Kolczak M.S.
        • et al.
        Cigarette smoking and invasive pneumococcal disease.
        N Engl J Med. 2000; 342: 681-689https://doi.org/10.1056/NEJM200003093421002
        • Pearce N.
        Analysis of matched case-control studies.
        BMJ. 2016; 352: i969https://doi.org/10.1136/bmj.i969
        • Lau J.
        • Ioannidis J.P.
        • Terrin N.
        • Schmid C.H.
        • Olkin I.
        The case of the misleading funnel plot.
        BMJ. 2006; 333: 597-600https://doi.org/10.1136/bmj.333.7568.597
        • French C.E.
        • Coope C.M.
        • McGuinness L.A.
        • Beck C.R.
        • Newitt S.
        • Ahyow L.
        • et al.
        Cannabis use and the risk of tuberculosis: a systematic review.
        BMC Public Health. 2019; 19: 1006https://doi.org/10.1186/s12889-019-7127-0
      1. WHO global report on trends in prevalence of tobacco smoking 2000–2025.
        2nd edition. Geneva: World Health Organization, 2019
        • Perez-Warnisher M.T.
        • de.Miguel.M.del P.C.
        • Seijo L.M.
        Tobacco use worldwide: legislative efforts to curb consumption.
        Ann Glob Health. 2018; 84: 571-579https://doi.org/10.29024/aogh.2362
        • Fadus M.C.
        • Smith T.T.
        • Squeglia L.M.
        The rise of e-cigarettes, pod mod devices, and JUUL among youth: factors influencing use, health implications, and downstream effects.
        Drug Alcohol Depend. 2019; 201: 85-93https://doi.org/10.1016/j.drugalcdep.2019.04.011
      2. UNODC. World Drug Report 2020. United Nations office on drugs and crime. 2020. https://wdr.unodc.org/wdr2020/.

        • Bruce M.G.
        • Rosenstein N.E.
        • Capparella J.M.
        • Shutt K.A.
        • Perkins B.A.
        • Collins M.
        Risk factors for meningococcal disease in college students.
        JAMA. 2001; 286: 688-693https://doi.org/10.1001/jama.286.6.688
        • Cookson S.T.
        • Corrales J.L.
        • Lotero J.O.
        • Regueira M.
        • Binsztein N.
        • Reeves M.W.
        • et al.
        Disco fever: epidemic meningococcal disease in northeastern argentina associated with disco patronage.
        J Infect Dis. 1998; 178: 266-269https://doi.org/10.1086/517450
        • Hodgson A.
        • Smith T.
        • Gagneux S.
        • Adjuik M.
        • Pluschke G.
        • Mensah N.K.
        • et al.
        Risk factors for meningococcal meningitis in northern Ghana.
        Trans R Soc Trop Med Hyg. 2001; 95: 477-480https://doi.org/10.1016/S0035-9203(01)90007-0
        • Hodgson A.
        • Smith T.
        • Gagneux S.
        • Akumah I.
        • Adjuik M.
        • Pluschke G.
        • et al.
        Survival and sequelae of meningococcal meningitis in Ghana.
        Int J Epidemiol. 2001; 30: 1440-1446https://doi.org/10.1093/ije/30.6.1440
        • Křížová P.
        • Kříž B.
        Factors affecting the occurrence and development of invasive meningococcal disease and development of Neisseria meningitidis carrier state-results of a nationwide prospective questionnaire survey of cases and controls.
        Epidemiologie, Mikrobiologie, Imunologie. 1999; 48: 140-152
        • Mandal S.
        • Wu H.M.
        • MacNeil J.R.
        • Machesky K.
        • Garcia J.
        • Plikaytis B.D.
        • et al.
        Prolonged university outbreak of meningococcal disease associated with a serogroup B strain rarely seen in the United States.
        Clin Infect Dis. 2013; 57: 344-348https://doi.org/10.1093/cid/cit243
        • Stuart J.M.
        • Cartwright K.A.V.
        • Dawson J.A.
        • Rickard J.
        • Noah N.D.
        Risk factors for meningococcal disease: a case control study in South West England.
        Community Med. 1988; 10: 139-146