Advertisement

Breast milk microbiota: A review of the factors that influence composition

  • Petra Zimmermann
    Correspondence
    Corresponding author at: Faculty of Science and Medicine, University of Fribourg, Route des Arsenaux 41, 1700 Fribourg, Switzerland.
    Affiliations
    Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Switzerland

    Department of Paediatrics, The University of Melbourne, Parkville, Australia

    Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia

    Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
    Search for articles by this author
  • Nigel Curtis
    Affiliations
    Department of Paediatrics, The University of Melbourne, Parkville, Australia

    Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia

    Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
    Search for articles by this author
Published:February 06, 2020DOI:https://doi.org/10.1016/j.jinf.2020.01.023

      Abstract

      Breastfeeding is associated with considerable health benefits for infants. Aside from essential nutrients, immune cells and bioactive components, breast milk also contains a diverse range of microbes, which are important for maintaining mammary and infant health. In this review, we summarise studies that have investigated the composition of the breast milk microbiota and factors that might influence it.
      We identified 44 studies investigating 3105 breast milk samples from 2655 women. Several studies reported that the bacterial diversity is higher in breast milk than infant or maternal faeces. The maximum number of each bacterial taxonomic level detected per study was 58 phyla, 133 classes, 263 orders, 596 families, 590 genera, 1300 species and 3563 operational taxonomic units. Furthermore, fungal, archaeal, eukaryotic and viral DNA was also detected. The most frequently found genera were Staphylococcus, Streptococcus Lactobacillus, Pseudomonas, Bifidobacterium, Corynebacterium, Enterococcus, Acinetobacter, Rothia, Cutibacterium, Veillonella and Bacteroides. There was some evidence that gestational age, delivery mode, biological sex, parity, intrapartum antibiotics, lactation stage, diet, BMI, composition of breast milk, HIV infection, geographic location and collection/feeding method influence the composition of the breast milk microbiota. However, many studies were small and findings sometimes contradictory. Manipulating the microbiota by adding probiotics to breast milk or artificial milk offers an exciting avenue for future interventions to improve infant health.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bode L
        Human milk oligosaccharides: every baby needs a sugar mama.
        Glycobiology. 2012; 22: 1147-1162
        • Bardanzellu F.
        • Fanos V.
        • Reali A.
        ``Omics'' in human colostrum and mature milk: looking to old data with new eyes.
        Nutrients. 2017; 9
        • Brown K.H.
        • Black R.E.
        • Lopez de Romana G.
        • Creed de Kanashiro H.
        Infant-feeding practices and their relationship with diarrheal and other diseases in Huascar (Lima), Peru.
        Pediatrics. 1989; 83: 31-40
        • Kramer M.S.
        • Chalmers B.
        • Hodnett E.D.
        • Sevkovskaya Z.
        • Dzikovich I.
        • Shapiro S.
        • et al.
        Promotion of Breastfeeding Intervention Trial (PROBIT): a randomized trial in the Republic of Belarus.
        JAMA. 2001; 285: 413-420
        • Duijts L.
        • Jaddoe V.W.
        • Hofman A.
        • Moll H.A.
        Prolonged and exclusive breastfeeding reduces the risk of infectious diseases in infancy.
        Pediatrics. 2010; 126: e18-e25
        • Meinzen-Derr J.
        • Poindexter B.
        • Wrage L.
        • Morrow A.L.
        • Stoll B.
        • Donovan E.F.
        Role of human milk in extremely low birth weight infants' risk of necrotizing enterocolitis or death.
        J Perinatol. 2009; 29: 57-62
        • Herrmann K.
        • Carroll K.
        An exclusively human milk diet reduces necrotizing enterocolitis.
        Breastfeeding Med. 2014; 9: 184-190
        • Lopez-Alarcon M.
        • Villalpando S.
        • Fajardo A.
        Breast-feeding lowers the frequency and duration of acute respiratory infection and diarrhea in infants under six months of age.
        J Nutr. 1997; 127: 436-443
        • Ladomenou F.
        • Moschandreas J.
        • Kafatos A.
        • Tselentis Y.
        • Galanakis E.
        Protective effect of exclusive breastfeeding against infections during infancy: a prospective study.
        Arch Dis Child. 2010; 95: 1004-1008
        • Tromp I.
        • Kiefte-de Jong J.
        • Raat H.
        • Jaddoe V.
        • Franco O.
        • Hofman A.
        • et al.
        Breastfeeding and the risk of respiratory tract infections after infancy: the generation r study.
        PLoS ONE. 2017; 12e0172763
        • Lanari M.
        • Prinelli F.
        • Adorni F.
        • Di Santo S.
        • Faldella G.
        • Silvestri M.
        • et al.
        Maternal milk protects infants against bronchiolitis during the first year of life. Results from an Italian cohort of newborns.
        Early Hum Dev. 2013; 89: S51-S57
        • Sadeharju K.
        • Knip M.
        • Virtanen S.M.
        • Savilahti E.
        • Tauriainen S.
        • Koskela P.
        • et al.
        Maternal antibodies in breast milk protect the child from enterovirus infections.
        Pediatrics. 2007; 119: 941-946
        • von Kries R.
        • Koletzko B.
        • Sauerwald T.
        • von Mutius E.
        • Barnert D.
        • Grunert V.
        • et al.
        Breast feeding and obesity: cross sectional study.
        BMJ. 1999; 319: 147-150
        • Gillman M.W.
        • Rifas-Shiman S.L.
        • Camargo Jr., C.A.
        • Berkey C.S.
        • Frazier A.L.
        • Rockett H.R.
        • et al.
        Risk of overweight among adolescents who were breastfed as infants.
        JAMA. 2001; 285: 2461-2467
        • Munblit D.
        • Verhasselt V.
        Allergy prevention by breastfeeding: possible mechanisms and evidence from human cohorts.
        Curr Opin Allergy Clin Immunol. 2016; 16: 427-433
        • Zimmermann P.
        • Curtis N.
        Factors influencing the intestinal microbiome during the first year of life.
        Pediatr Infect Dis J. 2018;
        • Gronlund M.M.
        • Gueimonde M.
        • Laitinen K.
        • Kociubinski G.
        • Gronroos T.
        • Salminen S.
        • et al.
        Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease.
        Clin Exp Allergy. 2007; 37: 1764-1772
        • Martin R.
        • Jimenez E.
        • Heilig H.
        • Fernandez L.
        • Marin M.L.
        • Zoetendal E.G.
        • et al.
        Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR.
        Appl Environ Microbiol. 2009; 75: 965-969
        • Murphy K.
        • Curley D.
        • O'Callaghan T.F.
        • O'Shea C.A.
        • Dempsey E.M.
        • O'Toole P.W.
        • et al.
        The composition of human milk and infant faecal microbiota over the first three months of life: a pilot study.
        Sci Rep. 2017; 7: 40597
        • Zimmermann P.
        • Messina N.
        • Mohn W.W.
        • Finlay B.B.
        • Curtis N.
        Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: a systematic review.
        J Allergy Clin Immunol. 2019; 143: 467-485
        • Manichanh C.
        • Rigottier-Gois L.
        • Bonnaud E.
        • Gloux K.
        • Pelletier E.
        • Frangeul L.
        • et al.
        Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach.
        Gut. 2006; 55: 205-211
        • Scott F.I.
        • Horton D.B.
        • Mamtani R.
        • Haynes K.
        • Goldberg D.S.
        • Lee D.Y.
        • et al.
        Administration of antibiotics to children before age 2 years increases risk for childhood obesity.
        Gastroenterology. 2016; 151 (120-9.e5)
        • Knip M.
        • Siljander H.
        The role of the intestinal microbiota in type 1 diabetes mellitus.
        Nature reviews Endocrinology. 2016; 12: 154-167
        • Zimmermann P.
        • Curtis N.
        The influence of the intestinal microbiome on vaccine responses.
        Vaccine. 2018; 36: 4433-4439
        • Parnanen K.
        • Karkman A.
        • Hultman J.
        • Lyra C.
        • Bengtsson-Palme J.
        • Larsson D.G.J.
        • et al.
        Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements.
        Nat Commun. 2018; 9: 3891
        • Damaceno Q.S.
        • Souza J.P.
        • Nicoli J.R.
        • Paula R.L.
        • Assis G.B.
        • Figueiredo H.C.
        • et al.
        Evaluation of potential probiotics isolated from human milk and colostrum.
        Probiot Antimicrob Prot. 2017; 9: 371-379
        • Jimenez E.
        • de Andres J.
        • Manrique M.
        • Pareja-Tobes P.
        • Tobes R.
        • Martinez-Blanch J.F.
        • et al.
        Metagenomic analysis of milk of healthy and mastitis-suffering women.
        J Hum Lactation. 2015; 31: 406-415
        • Ward T.L.
        • Hosid S.
        • Ioshikhes I.
        • Altosaar I.
        Human milk metagenome: a functional capacity analysis.
        BMC Microbiol. 2013; 13: 116
        • Albesharat R.
        • Ehrmann M.A.
        • Korakli M.
        • Yazaji S.
        • Vogel R.F.
        Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies.
        Syst Appl Microbiol. 2011; 34: 148-155
        • Hermansson H.
        • Kumar H.
        • Collado M.C.
        • Salminen S.
        • Isolauri E.
        • Rautava S.
        Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure.
        Front Nutr. 2019; 6: 4
        • Ojo-Okunola A.
        • Nicol M.
        • du Toit E.
        Human breast milk bacteriome in health and disease.
        Nutrients. 2018; 10
        • Ding M.
        • Qi C.
        • Yang Z.
        • Jiang S.
        • Bi Y.
        • Lai J.
        • et al.
        Geographical location specific composition of cultured microbiota and Lactobacillus occurrence in human breast milk in China.
        Food Funct. 2019; 10: 554-564
        • Moossavi S.
        • Sepehri S.
        • Robertson B.
        • Bode L.
        • Goruk S.
        • Field C.J.
        • et al.
        Composition and variation of the human milk microbiota are influenced by maternal and early-life factors.
        Cell Host Microbe. 2019; 25 (324-35.e4)
        • Simpson M.R.
        • Avershina E.
        • Storro O.
        • Johnsen R.
        • Rudi K.
        • Oien T.
        Breastfeeding-associated microbiota in human milk following supplementation with lactobacillus rhamnosus GG, Lactobacillus acidophilus La-5, and Bifidobacterium animalis ssp. lactis Bb-12.
        J Dairy Sci. 2018; 101: 889-899
        • Tuominen H.
        • Rautava S.
        • Collado M.C.
        • Syrjanen S.
        • Rautava J.
        HPV infection and bacterial microbiota in breast milk and infant oral mucosa.
        PLoS ONE. 2018; 13e0207016
        • Li S.W.
        • Watanabe K.
        • Hsu C.C.
        • Chao S.H.
        • Yang Z.H.
        • Lin Y.J.
        • et al.
        Bacterial composition and diversity in breast milk samples from mothers living in Taiwan and Mainland China.
        Front Microbiol. 2017; 8: 965
        • Toscano M.
        • De Grandi R.
        • Peroni D.G.
        • Grossi E.
        • Facchin V.
        • Comberiati P.
        • et al.
        Impact of delivery mode on the colostrum microbiota composition.
        BMC Microbiol. 2017; 17: 205
        • Pannaraj P.S.
        • Li F.
        • Cerini C.
        • Bender J.M.
        • Yang S.
        • Rollie A.
        • et al.
        Association between breast milk bacterial communities and establishment and development of the infant gut microbiome.
        JAMA Pediatr. 2017; 171: 647-654
        • Williams J.E.
        • Carrothers J.M.
        • Lackey K.A.
        • Beatty N.F.
        • York .M.A
        • Brooker S.L.
        • et al.
        Human milk microbial community structure is relatively stable and related to variations in macronutrient and micronutrient intakes in healthy lactating women.
        J Nutr. 2017; 147: 1739-1748
        • Biagi E.
        • Quercia S.
        • Aceti A.
        • Beghetti I.
        • Rampelli S.
        • Turroni S.
        • et al.
        The bacterial ecosystem of mother's milk and infant's mouth and gut.
        Front Microbiol. 2017; 8: 1214
        • Drago L.
        • Toscano M.
        • De Grandi R.
        • Grossi E.
        • Padovani E.M.
        • Peroni D.G.
        Microbiota network and mathematic microbe mutualism in colostrum and mature milk collected in two different geographic areas: Italy versus Burundi.
        ISME J. 2017; 11: 875-884
        • Cacho N.T.
        • Harrison N.A.
        • Parker L.A.
        • Padgett K.A.
        • Lemas D.J.
        • Marcial G.E.
        • et al.
        Personalization of the microbiota of donor human milk with mother's own milk.
        Front Microbiol. 2017; 8: 1470
        • Patel S.H.
        • Vaidya Y.H.
        • Patel R.J.
        • Pandit R.J.
        • Joshi C.G.
        • Kunjadiya A.P.
        Culture independent assessment of human milk microbial community in lactational mastitis.
        Sci Rep. 2017; 7: 7804
        • Boix-Amoros A.
        • Collado M.C.
        • Mira A.
        Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation.
        Front Microbiol. 2016; 7: 492
        • Kumar H.
        • du Toit E.
        • Kulkarni A.
        • Aakko J.
        • Linderborg K.M.
        • Zhang Y.
        • et al.
        Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations.
        Front Microbiol. 2016; 7: 1619
        • Urbaniak C.
        • Angelini M.
        • Gloor G.B.
        • Reid G.
        Human milk microbiota profiles in relation to birthing method, gestation and infant gender.
        Microbiome. 2016; 4: 1
        • Sakwinska O.
        • Moine D.
        • Delley M.
        • Combremont S.
        • Rezzonico E.
        • Descombes P.
        • et al.
        Microbiota in breast milk of Chinese lactating mothers.
        PLoS ONE. 2016; 11e0160856
        • Dave V.
        • Street K.
        • Francis S.
        • Bradman A.
        • Riley L.
        • Eskenazi B.
        • et al.
        Bacterial microbiome of breast milk and child saliva from low-income mexican-american women and children.
        Pediatr Res. 2016; 79: 846-854
        • Cabrera-Rubio R.
        • Mira-Pascual L.
        • Mira A.
        • Collado M.C.
        Impact of mode of delivery on the milk microbiota composition of healthy women.
        J Dev Orig Health Dis. 2016; 7: 54-60
        • Jost T.
        • Lacroix C.
        • Braegger C.
        • Chassard C.
        Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches.
        Br J Nutr. 2013; 110: 1253-1262
        • Jost T.
        • Lacroix C.
        • Braegger C.P.
        • Rochat F.
        • Chassard C.
        Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding.
        Environ Microbiol. 2014; 16: 2891-2904
        • Cabrera-Rubio R.
        • Collado M.C.
        • Laitinen K.
        • Salminen S.
        • Isolauri E.
        • Mira A.
        The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery.
        Am J Clin Nutr. 2012; 96: 544-551
        • Hunt K.M.
        • Foster J.A.
        • Forney L.J.
        • Schutte U.M.
        • Beck .D.L
        • Abdo Z.
        • et al.
        Characterization of the diversity and temporal stability of bacterial communities in human milk.
        PLoS ONE. 2011; 6: e21313
        • Solis G.
        • de Los Reyes-Gavilan C.G.
        • Fernandez N.
        • Margolles A.
        • Gueimonde M.
        Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut.
        Anaerobe. 2010; 16: 307-310
        • Martin R.
        • Heilig H.G.
        • Zoetendal E.G.
        • Jimenez E.
        • Fernandez L.
        • Smidt H.
        • et al.
        Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women.
        Res Microbiol. 2007; 158: 31-37
        • Huang M.S.
        • Cheng C.C.
        • Tseng S.Y.
        • Lin Y.L.
        • Lo H.M.
        • Chen P.W.
        Most commensally bacterial strains in human milk of healthy mothers display multiple antibiotic resistance.
        Microbiologyopen. 2019; 8: e00618
        • Aakko J.
        • Kumar H.
        • Rautava S.
        • Wise A.
        • Autran C.
        • Bode L.
        • et al.
        Human milk oligosaccharide categories define the microbiota composition in human colostrum.
        Benef Microbes. 2017; 8: 563-567
        • Obermajer T.
        • Lipoglavsek L.
        • Tompa G.
        • Treven P.
        • Lorbeg P.M.
        • Matijasic B.B.
        • et al.
        Colostrum of healthy Slovenian mothers: microbiota composition and bacteriocin gene prevalence.
        PLoS ONE. 2014; 10e0123324
        • Khodayar-Pardo P.
        • Mira-Pascual L.
        • Collado M.C.
        • Martinez-Costa C.
        Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota.
        J Perinatol. 2014; 34: 599-605
        • Gonzalez R.
        • Maldonado A.
        • Martin V.
        • Mandomando I.
        • Fumado V.
        • Metzner K.J.
        • et al.
        Breast milk and gut microbiota in African mothers and infants from an area of high HIV prevalence.
        PLoS ONE. 2013; 8: e80299
        • Collado M.C.
        • Delgado S.
        • Maldonado A.
        • Rodriguez J.M.
        Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR.
        Lett Appl Microbiol. 2009; 48: 523-528
        • Chen P.W.
        • Tseng S.Y.
        • Huang M.S.
        Antibiotic susceptibility of commensal bacteria from human milk.
        Curr Microbiol. 2016; 72: 113-119
        • Moles L.
        • Escribano E.
        • de Andres J.
        • Montes M.T.
        • Rodriguez J.M.
        • Jimenez E.
        • et al.
        Administration of Bifidobacterium breve PS12929 and Lactobacillus salivarius PS12934, two strains isolated from human milk, to very low and extremely low birth weight preterm infants: a pilot study.
        J Immunol Res. 2015; 2015538171
        • Dahaban N.M.
        • Romli M.F.
        • Roslan N.R.
        • Kong S.S.
        • Cheah F.C.
        Bacteria in expressed breastmilk from mothers of premature infants and maternal hygienic status.
        Breastfeeding Med. 2013; 8: 422-423
        • Jimenez E.
        • Delgado S.
        • Maldonado A.
        • Arroyo R.
        • Albujar M.
        • Garcia N.
        • et al.
        Staphylococcus epidermidis: a differential trait of the fecal microbiota of breast-fed infants.
        BMC Microbiol. 2008; 8: 143
        • Heikkila M.P.
        • Saris P.E.
        Inhibition of Staphylococcus aureus by the commensal bacteria of human milk.
        J Appl Microbiol. 2003; 95: 471-478
        • Bender J.M.
        • Li F.
        • Martelly S.
        • Byrt E.
        • Rouzier V.
        • Leo M.
        • et al.
        Maternal HIV infection influences the microbiome of HIV-uninfected infants.
        Sci Transl Med. 2016; 8 (349ra100)
        • Gueimonde M.
        • Laitinen K.
        • Salminen S.
        • Isolauri E.
        Breast milk: a source of bifidobacteria for infant gut development and maturation?.
        Neonatology. 2007; 92: 64-66
        • Beasley S.S.
        • Saris P.E.
        Nisin-producing Lactococcus lactis strains isolated from human milk.
        Appl Environ Microbiol. 2004; 70: 5051-5053
        • Martin V.
        • Maldonado-Barragan A.
        • Moles L.
        • Rodriguez-Banos M.
        • Campo R.D.
        • Fernandez L.
        • et al.
        Sharing of bacterial strains between breast milk and infant feces.
        J Hum Lactation. 2012; 28: 36-44
        • Mastromarino P.
        • Capobianco D.
        • Campagna G.
        • Laforgia N.
        • Drimaco P.
        • Dileone A.
        • et al.
        Correlation between lactoferrin and beneficial microbiota in breast milk and infant's feces.
        Biometals. 2014; 27: 1077-1086
        • Tuzun F.
        • Kumral A.
        • Duman N.
        • Ozkan H.
        Breast milk jaundice: effect of bacteria present in breast milk and infant feces.
        J. Pediatr Gastroenterol Nutr. 2013; 56: 328-332
        • Soto A.
        • Martin V.
        • Jimenez E.
        • Mader I.
        • Rodriguez J.M.
        • Fernandez L.
        Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors.
        J Pediatr Gastroenterol Nutr. 2014; 59: 78-88
        • Perrin M.T.
        • Fogleman A.D.
        • Davis D.D.
        • Wimer C.H.
        • Vogel K.G.
        • Palmquist A.E.L.
        A pilot study on nutrients, antimicrobial proteins, and bacteria in commerce-free models for exchanging expressed human milk in the USA.
        Matern Child Nutr. 2018; 14: e12566
        • Dubos C.
        • Vega N.
        • Carvallo C.
        • Navarrete P.
        • Cerda C.
        • Brunser O.
        • et al.
        Identification of Lactobacillus spp. in colostrum from Chilean mothers.
        Arch Latinoam Nutr. 2011; 61: 66-68
        • Hoashi M.
        • Meche L.
        • Mahal L.K.
        • Bakacs E.
        • Nardella D.
        • Naftolin F.
        • et al.
        Human milk bacterial and glycosylation patterns differ by delivery mode.
        Reprod Sci. 2016; 23: 902-907
        • Liebhaber M.
        • Lewiston N.J.
        • Asquith M.T.
        • Sunshine P.
        Comparison of bacterial contamination with two methods of human milk collection.
        J Pediatr. 1978; 92: 236-237
        • Eidelman A.I.
        • Szilagyi G.
        Patterns of bacterial colonization of human milk.
        Obstet Gynecol. 1979; 53: 550-552
        • Carroll L.
        • Osman M.
        • Davies D.P.
        • McNeish A.S.
        Bacteriological criteria for feeding raw breast-milk to babies on neonatal units.
        Lancet. 1979; 2: 732-733
        • West P.A.
        • Hewitt J.H.
        • Murphy O.M.
        Influence of methods of collection and storage on the bacteriology of human milk.
        J Appl Bacteriol. 1979; 46: 269-277
        • el-Mohandes A.E.
        • Schatz V.
        • Keiser J.F.
        • Jackson B.J.
        Bacterial contaminants of collected and frozen human milk used in an intensive care nursery.
        Am J Infect Control. 1993; 21: 226-230
        • Wyatt R.G.
        • Mata L.J.
        Bacteria in colostrum and milk of Guatemalan Indian women.
        J Trop Pediatr. 1969; 15 (1967): 159-162
        • Nikodemusz I.
        [Microflora in human milk samples].
        Nahrung. 1986; 30: 901-906
        • Padilha M.
        • Iaucci J.M.
        • Cabral V.P.
        • Diniz E.M.A.
        • Taddei C.R.
        • Saad S.M.I.
        Maternal antibiotic prophylaxis affects Bifidobacterium spp. counts in the human milk, during the first week after delivery.
        Benef Microbes. 2019; 10: 155-163
        • Boer H.R.
        • Anido G.
        • Macdonald N.
        Bacterial colonization of human milk.
        South. Med. J. 1981; 74: 716-718
        • Eidelman A.I.
        Gram-negative bacilli in human milk.
        J. Pediatr. 1988; 112500
        • Asquith M.T.
        • Harrod J.R.
        Reduction of bacterial contamination in banked human milk.
        J. Pediatr. 1979; 95: 993-994
        • Perez P.F.
        • Dore J.
        • Leclerc M.
        • Levenez F.
        • Benyacoub J.
        • Serrant P.
        • et al.
        Bacterial imprinting of the neonatal immune system: lessons from maternal cells?.
        Pediatrics. 2007; 119: e724-e732
        • Gidrewicz D.A.
        • Fenton T.R.
        A systematic review and meta-analysis of the nutrient content of preterm and term breast milk.
        BMC Pediatr. 2014; 14: 216
        • Dizdar E.A.
        • Sari F.N.
        • Degirmencioglu H.
        • Canpolat F.E.
        • Oguz S.S.
        • Uras N.
        • et al.
        Effect of mode of delivery on macronutrient content of breast milk.
        J Matern Fetal Neonatal Med. 2014; 27: 1099-1102
        • Powe C.E.
        • Knott C.D.
        • Conklin-Brittain N.
        Infant sex predicts breast milk energy content.
        Am J Hum Biol. 2010; 22: 50-54
        • Gosalbes M.J.
        • Valles Y.
        • Jimenez-Hernandez N.
        • Balle C.
        • Riva P.
        • Miravet-Verde S.
        • et al.
        High frequencies of antibiotic resistance genes in infants' meconium and early fecal samples.
        J Dev Orig Health Dis. 2016; 7: 35-44
        • Bocci V.
        • von Bremen K.
        • Corradeschi F.
        • Luzzi E.
        • Paulesu L.
        What is the role of cytokines in human colostrum?.
        J Biol Regul Homeost Agents. 1991; 5: 121-124
        • Ballard O.
        • Morrow A.L.
        Human milk composition: nutrients and bioactive factors.
        Pediatr Clin North Am. 2013; 60: 49-74
        • Collado M.C.
        • Laitinen K.
        • Salminen S.
        • Isolauri E.
        Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk.
        Pediatr Res. 2012; 72: 77-85
        • Lewis Z.T.
        • Totten S.M.
        • Smilowitz J.T.
        • Popovic M.
        • Parker E.
        • Lemay D.G.
        • et al.
        Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants.
        Microbiome. 2015; 3: 13
        • Napierala M.
        • Mazela J.
        • Merritt T.A.
        • Florek E.
        Tobacco smoking and breastfeeding: effect on the lactation process, breast milk composition and infant development. A critical review.
        Environ Res. 2016; 151: 321-338
        • Martin R.
        • Olivares M.
        • Marin M.L.
        • Fernandez L.
        • Xaus J.
        • Rodriguez J.M.
        Probiotic potential of 3 Lactobacilli strains isolated from breast milk.
        J Hum Lact. 2005; 21 (quiz 8-21, 41): 8-17
        • Martin R.
        • Jimenez E.
        • Olivares M.
        • Marin M.L.
        • Fernandez L.
        • Xaus J.
        • et al.
        Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair.
        Int J Food Microbiol. 2006; 112: 35-43
        • Olivares M.
        • Diaz-Ropero M.P.
        • Martin R.
        • Rodriguez J.M.
        • Xaus J.
        Antimicrobial potential of four Lactobacillus strains isolated from breast milk.
        J Appl Microbiol. 2006; 101: 72-79
        • Uehara Y.
        • Kikuchi K.
        • Nakamura T.
        • Nakama H.
        • Agematsu K.
        • Kawakami Y.
        • et al.
        H(2)O(2) produced by viridans group streptococci may contribute to inhibition of methicillin-resistant Staphylococcus aureus colonization of oral cavities in newborns.
        Clin Infect Dis. 2001; 32: 1408-1413
        • Nakano V.
        • Ignacio A.
        • Fernandes M.
        • Fukugaiti M.
        • Avila-Campos M.
        Intestinal Bacteroides and Parabacteroides species producing antagonistic substances.
        Curr Trends Microbiol. 2006; : 61-64
        • Reis N.A.
        • Saraiva M.A.
        • Duarte E.A.
        • de Carvalho E.A.
        • Vieira B.B.
        • Evangelista-Barreto N.S.
        Probiotic properties of lactic acid bacteria isolated from human milk.
        J Appl. Microbiol. 2016; 121: 811-820
        • Jiang M.
        • Zhang F.
        • Wan C.
        • Xiong y.
        • Shah N.P.
        • Wei H.
        • et al.
        Evaluation of probiotic properties of Lactobacillus plantarum WLPL04 isolated from human breast milk.
        J Dairy Sci. 2016; 99: 1736-1746
        • Gilliland S.E.
        Health and nutritional benefits from lactic acid bacteria.
        FEMS Microbiol Rev. 1990; 7: 175-188
        • Kverka M.
        • Zakostelska Z.
        • Klimesova K.
        • Sokol D.
        • Hudcovic T.
        • Hrncir T.
        • et al.
        Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition.
        Clin Exp Immunol. 2011; 163: 250-259
        • Kang M.S.
        • Chung J.
        • Kim S.M.
        • Yang K.H.
        • Oh J.S.
        Effect of Weissella cibaria isolates on the formation of Streptococcus mutans biofilm.
        Caries Res. 2006; 40: 418-425
        • Yu H.S.
        • Lee N.K.
        • Choi A.J.
        • Choe J.S.
        • Bae C.H.
        • Paik H.D.
        Anti-Inflammatory potential of probiotic strain Weissella cibaria JW15 isolated from Kimchi through regulation of NF-kappaB and MAPKs pathways in LPS-Induced raw 264.7 cells.
        J Microbiol Biotechnol. 2019; 29: 1022-1032
        • Ling Z.
        • Kong J.
        • Liu F.
        • Zhu H.
        • Chen X.
        • Wang Y.
        • et al.
        Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis.
        BMC Genomics. 2010; 11: 488
        • Shu M.
        • Wang Y.
        • Yu J.
        • Kuo S.
        • Coda A.
        • Jiang Y.
        • et al.
        Fermentation of Propionibacterium acnes, a commensal bacterium in the human skin microbiome, as skin probiotics against methicillin-resistant Staphylococcus aureus.
        PLoS ONE. 2013; 8: e55380
        • Foxman B.
        • D'Arcy H.
        • Gillespie B.
        • Bobo J.K.
        • Schwartz K.
        Lactation mastitis: occurrence and medical management among 946 breastfeeding women in the United States.
        Am J Epidemiol. 2002; 155: 103-114
        • Hapfelmeier S.
        • Lawson M.A.
        • Slack E.
        • Kirundi J.K.
        • Stoel M.
        • Heikenwalder M.
        • et al.
        Reversible microbial colonization of germ-free mice reveals the dynamics of IGA immune responses.
        Science. 2010; 328: 1705-1709
        • Gan X.T.
        • Ettinger G.
        • Huang C.X.
        • Burton J.P.
        • Haist J.V.
        • Rajapurohitam V.
        • et al.
        Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat.
        Circ Heart Fail. 2014; 7: 491-499
        • Ramsay D.T.
        • Kent J.C.
        • Owens R.A.
        • Hartmann P.E.
        Ultrasound imaging of milk ejection in the breast of lactating women.
        Pediatrics. 2004; 113: 361-367
        • Sohn K.
        • Kalanetra K.M.
        • Mills D.A.
        • Underwood M.A.
        Buccal administration of human colostrum: impact on the oral microbiota of premature infants.
        J Perinatol. 2016; 36: 106-111
        • Guarner F.
        • Malagelada J.R.
        Gut flora in health and disease.
        Lancet. 2003; 361: 512-519
        • Sedman P.C.
        • Macfie J.
        • Sagar P.
        • Mitchell C.J.
        • May J.
        • Mancey-Jones B.
        • et al.
        The prevalence of gut translocation in humans.
        Gastroenterology. 1994; 107: 643-649
        • Rescigno M.
        • Urbano M.
        • Valzasina B.
        • Francolini M.
        • Rotta G.
        • Bonasio R.
        • et al.
        Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria.
        Nat Immunol. 2001; 2: 361-367
        • Vazquez-Torres A.
        • Jones-Carson J.
        • Baumler A.J.
        • Falkow S.
        • Valdivia R.
        • Brown W.
        • et al.
        Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes.
        Nature. 1999; 401: 804-808
        • Martı́n R.
        • Langa S.
        • Reviriego C.
        • Jiménez E.
        • Marın Ma L.
        • Olivares M.
        • et al.
        The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics.
        Trends Food Sci Technol. 2004; 15: 121-127
        • Kulagina E.V.
        • Shkoporov A.N.
        • Kafarskaia L.I.
        • Khokhlova E.V.
        • Volodin N.N.
        • Donskikh E.E.
        • et al.
        Molecular genetic study of species and strain variability in bifidobacteria population in intestinal microflora of breast-fed infants and their mothers.
        Bull Exp Biol Med. 2010; 150: 61-64
        • Takahashi H.
        • Mikami K.
        • Nishino R.
        • Matsuoka T.
        • Kimura M.
        • Koga Y.
        Comparative analysis of the properties of bifidobacterial isolates from fecal samples of mother-infant pairs.
        J Pediatr Gastroenterol Nutr. 2010; 51: 653-660
        • Makino H.
        • Kushiro A.
        • Ishikawa E.
        • Muylaert D.
        • Kubota H.
        • Sakai T.
        • et al.
        Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism.
        Appl Environ Microbiol. 2011; 77: 6788-6793
        • Jimenez E.
        • Fernandez L.
        • Maldonado A.
        • Martin R.
        • Olivares M.
        • Xaus J.
        • et al.
        Oral administration of Lactobacillus strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation.
        Appl. Environ. Microbiol. 2008; 74: 4650-4655
        • Abrahamsson T.R.
        • Sinkiewicz G.
        • Jakobsson T.
        • Fredrikson M.
        • Bjorksten B.
        Probiotic lactobacilli in breast milk and infant stool in relation to oral intake during the first year of life.
        J. Pediatr. Gastroenterol. Nutr. 2009; 49: 349-354
        • Arroyo R.
        • Martin V.
        • Maldonado A.
        • Jimenez E.
        • Fernandez L.
        • Rodriguez J.M.
        Treatment of infectious mastitis during lactation: antibiotics versus oral administration of Lactobacilli isolated from breast milk.
        Clin Infect Dis. 2010; 50: 1551-1558
        • Fusco V.
        • Quero G.M.
        • Cho G.S.
        • Kabisch J.
        • Meske D.
        • Neve H.
        • et al.
        The genus Weissella: taxonomy, ecology and biotechnological potential.
        Front Microbiol. 2015; 6: 155
        • Dalpke A.
        • Frank J.
        • Peter M.
        • Heeg K.
        Activation of toll-like receptor 9 by DNA from different bacterial species.
        Infect. Immun. 2006; 74: 940-946
        • Gursel I.
        • Gursel M.
        • Yamada H.
        • Ishii K.J.
        • Takeshita F.
        • Klinman D.M.
        Repetitive elements in mammalian telomeres suppress bacterial DNA-induced immune activation.
        J Immunol. 2003; 171: 1393-1400
        • Bouladoux N.
        • Hall J.A.
        • Grainger J.R.
        • dos Santos L.M.
        • Kann M.G.
        • Nagarajan V.
        • et al.
        Regulatory role of suppressive motifs from commensal DNA.
        Mucosal Immunol. 2012; 5: 623-634
        • Lundequist B.
        • Nord C.E.
        • Winberg J.
        The composition of the faecal microflora in breastfed and bottle fed infants from birth to eight weeks.
        Acta Paediatr Scand. 1985; 74: 45-51
        • Balmer S.E.
        • Wharton B.A.
        Diet and faecal flora in the newborn: breast milk and infant formula.
        Arch Dis Child. 1989; 64: 1672-1677
        • Jost T.
        • Lacroix C.
        • Braegger C.P.
        • Chassard C.
        New insights in gut microbiota establishment in healthy breast fed neonates.
        PLoS ONE. 2012; 7: e44595
        • Hugon P.
        • Lagier J.C.
        • Robert C.
        • Lepolard C.
        • Papazian L.
        • Musso D.
        • et al.
        Molecular studies neglect apparently gram-negative populations in the human gut microbiota.
        J Clin Microbiol. 2013; 51: 3286-3293
        • Sim K.
        • Cox M.J.
        • Wopereis H.
        • Martin R.
        • Knol J.
        • Li M.S.
        • et al.
        Improved detection of bifidobacteria with optimised 16S rRNA-gene based pyrosequencing.
        PLoS ONE. 2012; 7: e32543
        • Arboleya S.
        • Ruas-Madiedo P.
        • Margolles A.
        • Solis G.
        • Salminen S.
        • de Los Reyes-Gavilan C.G.
        • et al.
        Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk.
        Int J Food Microbiol. 2011; 149: 28-36
        • Kozak K.
        • Charbonneau D.
        • Sanozky-Dawes R.
        • Klaenhammer T
        Characterization of bacterial isolates from the microbiota of mothers' breast milk and their infants.
        Gut Microbes. 2015; 6: 341-351