Advertisement
Review| Volume 79, ISSUE 6, P471-489, December 2019

Download started.

Ok

The effect of antibiotics on the composition of the intestinal microbiota - a systematic review

  • Petra Zimmermann
    Correspondence
    Corresponding author at: Faculty of Science and Medicine, University of Fribourg, Fribourg, Route des Arsenaux 41, 1700 Fribourg, Switzerland.
    Affiliations
    Department of Paediatrics, Fribourg Hospital HFR and Faculty of Science and Medicine, University of Fribourg, Switzerland

    Department of Paediatrics, The University of Melbourne, Parkville, Australia

    Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia

    Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
    Search for articles by this author
  • Nigel Curtis
    Affiliations
    Department of Paediatrics, The University of Melbourne, Parkville, Australia

    Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, Australia

    Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, Australia
    Search for articles by this author
Published:October 18, 2019DOI:https://doi.org/10.1016/j.jinf.2019.10.008

      Highlights

      • Antibiotics cause profound changes in the intestinal microbiota. These changes including a decrease in bacterial diversity, changes in the abundances of certain bacteria and an increase in antibiotic resistance.
      • The longest duration of changes was observed after treatment with ciprofloxacin (one year), clindamycin (two years) and clarithromycin plus metronidazole (four years). However, these findings are limited by follow-up times.
      • Understanding the effects of antibiotics on the intestinal microbiota will help tailor antibiotic treatment to minimise this ‘collateral damage’.

      Abstract

      Objective

      Antibiotics change the composition of the intestinal microbiota. The magnitude of the effect of antibiotics on the microbiota and whether the effects are short-term or persist long-term remain uncertain. In this review, we summarise studies that have investigated the effect of antibiotics on the composition of the human intestinal microbiota.

      Methods

      A systematic search was done to identify original studies that have investigated the effect of systemic antibiotics on the intestinal microbiota in humans.

      Results

      We identified 129 studies investigating 2076 participants and 301 controls. Many studies reported a decrease in bacterial diversity with antibiotic treatment. Penicillin only had minor effects on the intestinal microbiota. Amoxicillin, amoxcillin/clavulanate, cephalosporins, lipopolyglycopeptides, macrolides, ketolides, clindamycin, tigecycline, quinolones and fosfomycin all increased abundance of Enterobacteriaea other than E. coli (mainly Citrobacter spp., Enterobacter spp. and Klebsiella spp.). Amoxcillin, cephalosporins, macrolides, clindamycin, quinolones and sulphonamides decreased abundance of E. coli, while amoxcillin/clavulante, in contrast to other penicillins, increased abundance of E. coli. Amoxicllin, piperacillin and ticarcillin, cephalosporins (except fifth generation cephalosporins), carbapenems and lipoglycopeptides were associated with increased abundance of Enterococcus spp., while macrolides and doxycycline decreased its abundance. Piperacillin and ticarcillin, carbapenems, macrolides, clindamycin and quinolones strongly decreased the abundance of anaerobic bacteria. In the studies that investigated persistence, the longest duration of changes was reported after treatment with ciprofloxacin (one year), clindamycin (two years) and clarithromycin plus metronidazole (four years). Many antibiotics were associated with a decrease in butyrate or butryrate-producing bacteria.

      Conclusion

      Antibiotics have profound and sometimes persisting effects on the intestinal microbiota, characterised by diminished abundance of beneficial commensals and increased abundance of potentially detrimental microorganisms. Understanding these effects will help tailor antibiotic treatment and the use of probiotics to minimise this ‘collateral damage’.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rajilic-Stojanovic M.
        • de Vos W.M.
        The first 1000 cultured species of the human gastrointestinal microbiota.
        FEMS Microbiol Rev. 2014; : 996-1047
        • Frank D.N.
        • St Amand A.L.
        • Feldman R.A.
        • Boedeker E.C.
        • Harpaz N.
        • Pace N.R.
        Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.
        Proc Natl Acad Sci U S A. 2007; : 13780-13785
        • Eckburg P.B.
        • Bik E.M.
        • Bernstein C.N.
        • Purdom E.
        • Dethlefsen L.
        • Sargent M.
        • et al.
        Diversity of the human intestinal microbial flora.
        Science. 2005; : 1635-1638
        • Forster S.C.
        • Kumar N.
        • Anonye B.O.
        • Almeida A.
        • Viciani E.
        • Stares M.D.
        • et al.
        A human gut bacterial genome and culture collection for improved metagenomic analyses.
        Nat Biotechnol. 2019; : 186-192
        • Lagier J.C.
        • Khelaifia S.
        • Alou M.T.
        • Ndongo S.
        • Dione N.
        • Hugon P.
        • et al.
        Culture of previously uncultured members of the human gut microbiota by culturomics.
        Nat Microbiol. 2016; : 16203
        • Zeevi D.
        • Korem T.
        • Segal E.
        Talking about cross-talk: the immune system and the microbiome.
        Genome Biol. 2016; : 50
        • Zimmermann P.
        • Messina N.
        • Mohn W.W.
        • Finlay B.B.
        • Curtis N.
        Association between the intestinal microbiota and allergic sensitization, eczema, and asthma: A systematic review.
        J Allergy Clin Immunol. 2018;
        • Zimmermann P.
        • Curtis N.
        The influence of the intestinal microbiome on vaccine responses.
        Vaccine. 2018; : 4433-4439
        • Kuppala V.S.
        • Meinzen-Derr J.
        • Morrow A.L.
        • Schibler K.R.
        Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants.
        J Pediatr. 2011; : 720-725
        • Cotten C.M.
        • Taylor S.
        • Stoll B.
        • Goldberg R.N.
        • Hansen N.I.
        • Sanchez P.J.
        • et al.
        Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants.
        Pediatrics. 2009; : 58-66
        • Metsala J.
        • Lundqvist A.
        • Virta L.J.
        • Kaila M.
        • Gissler M.
        • Virtanen S.M.
        Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood.
        Clin Exp Allergy. 2015; : 137-145
        • Azad M.B.
        • Moossavi S.
        • Owora A.
        • Sepehri S.
        Early-Life Antibiotic Exposure, Gut Microbiota Development, and Predisposition to Obesity.
        Nestle Nutr Inst Workshop Ser. 2017; : 67-79
        • Strzepa A.
        • Lobo F.M.
        • Majewska-Szczepanik M.
        • Szczepanik M.
        Antibiotics and autoimmune and allergy diseases: Causative factor or treatment?.
        Int Immunopharmacol. 2018; : 328-341
        • van der Waaij D.
        • Nord C.E.
        Development and persistence of multi-resistance to antibiotics in bacteria; an analysis and a new approach to this urgent problem.
        Int J Antimicrob Agents. 2000; : 191-197
        • Smillie C.S.
        • Smith M.B.
        • Friedman J.
        • Cordero O.X.
        • David L.A.
        • Alm E.J.
        Ecology drives a global network of gene exchange connecting the human microbiome.
        Nature. 2011; : 241-244
        • Lester C.H.
        • Frimodt-Moller N.
        • Sorensen T.L.
        • Monnet D.L.
        • Hammerum A.M.
        In vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers.
        Antimicrob Agents Chemother. 2006; : 596-599
        • Salyers A.A.
        • Gupta A.
        • Wang Y.
        Human intestinal bacteria as reservoirs for antibiotic resistance genes.
        Trends Microbiol. 2004; : 412-416
        • Scott K.P.
        The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract.
        Cell Mol Life Sci. 2002; : 2071-2082
        • Doucet-Populaire F.
        • Trieu-Cuot P.
        • Dosbaa I.
        • Andremont A.
        • Courvalin P.
        Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice.
        Antimicrob Agents Chemother. 1991; : 185-187
        • Goerke C.
        • Koller J.
        • Wolz C.
        Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus.
        Antimicrob Agents Chemother. 2006; : 171-177
        • Sterne J.A.
        • Hernan M.A.
        • Reeves B.C.
        • Savovic J.
        • Berkman N.D.
        • Viswanathan M.
        • et al.
        ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions.
        Bmj. 2016; : i4919
        • Adamsson I.
        • Edlund C.
        • Sjostedt S.
        • Nord C.E.
        Comparative effects of cefadroxil and phenoxymethylpenicillin on the normal oropharyngeal and intestinal microflora.
        Infection. 1997; : 154-158
        • Heimdahl A.
        • Kager L.
        • Malmborg A.S.
        • Nord C.E.
        Impact of different betalactam antibiotics on the normal human flora, and colonization of the oral cavity, throat and colon.
        Infection. 1982; : 120-124
        • Heimdahl A.
        • Nord C.E.
        Effect of phenoxymethylpenicillin and clindamycin on the oral, throat and faecal microflora of man.
        Scand J Infect Dis. 1979; : 233-242
        • Ambrose N.S.
        • Johnson M.
        • Burdon D.W.
        • Keighley M.R.
        The influence of single dose intravenous antibiotics on faecal flora and emergence of Clostridium difficile.
        J Antimicrob Chemother. 1985; : 319-326
        • Zaura E.
        • Brandt B.W.
        • Teixeira de Mattos M.J.
        • Buijs M.J.
        • Caspers M.P.
        • Rashid M.U.
        • et al.
        Same Exposure but Two Radically Different Responses to Antibiotics: Resilience of the Salivary Microbiome versus Long-Term Microbial Shifts in Feces.
        MBio. 2015; (615 e01601): e01693
        • Pallav K.
        • Dowd S.E.
        • Villafuerte J.
        • Yang X.
        • Kabbani T.
        • Hansen J.
        • et al.
        Effects of polysaccharopeptide from Trametes versicolor and amoxicillin on the gut microbiome of healthy volunteers: a randomized clinical trial.
        Gut Microbes. 2014; : 458-467
        • De La Cochetiere M.F.
        • Durand T.
        • Lepage P.
        • Bourreille A.
        • Galmiche J.P.
        • Dore J.
        Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge.
        J Clin Microbiol. 2005; : 5588-5592
        • Stark C.A.
        • Adamsson I.
        • Edlund C.
        • Sjosted S.
        • Seensalu R.
        • Wikstrom B.
        • et al.
        Effects of omeprazole and amoxycillin on the human oral and gastrointestinal microflora in patients with Helicobacter pylori infection.
        J Antimicrob Chemother. 1996; : 927-939
        • Floor M.
        • van Akkeren F.
        • Rozenberg-Arska M.
        • Visser M.
        • Kolsters A.
        • Beumer H.
        • et al.
        Effect of loracarbef and amoxicillin on the oropharyngeal and intestinal microflora of patients with bronchitis.
        Scand J Infect Dis. 1994; : 191-197
        • Brismar B.
        • Edlund C.
        • Nord C.E.
        Impact of cefpodoxime proxetil and amoxicillin on the normal oral and intestinal microflora.
        Eur J Clin Microbiol Infect Dis. 1993; : 714-719
        • Black F.
        • Einarsson K.
        • Lidbeck A.
        • Orrhage K.
        • Nord C.E.
        Effect of lactic acid producing bacteria on the human intestinal microflora during ampicillin treatment.
        Scand J Infect Dis. 1991; : 247-254
        • Christensson B.
        • Nilsson-Ehle I.
        • Ljungberg B.
        • Nömm I.
        • Oscarsson G.
        • Nordström L.
        • et al.
        Swedish Study Group. A randomized multicenter trial to compare the influence of cefaclor and amoxycillin on the colonization resistance of the digestive tract in patients with lower respiratory tract infection.
        Infection. 1991; : 208-215
        • Heimdahl A.
        • Nord C.E.
        • Weilander K.
        Effect of bacampicillin on human mouth, throat and colon flora.
        Infection. 1979; : S446-S451
        • Sullivan A.
        • Edlund C.
        • Svenungsson B.
        • Emtestam L.
        • Nord C.E.
        Effect of perorally administered pivmecillinam on the normal oropharyngeal, intestinal and skin microflora.
        J Chemother. 2001; : 299-308
        • Nord C.E.
        • Bergan T.
        • Aase S.
        Impact of azlocillin on the colon microflora.
        Scand J Infect Dis. 1986; : 163-166
        • Vlaspolder F.
        • de Zeeuw G.
        • Rozenberg-Arska M.
        • Egyedi P.
        • Verhoef J.
        The influence of flucloxacillin and amoxicillin with clavulanic acid on the aerobic flora of the alimentary tract.
        Infection. 1987; : 241-244
        • Kabbani T.A.
        • Pallav K.
        • Dowd S.E.
        • Villafuerte-Galvez J.
        • Vanga R.R.
        • Castillo N.E.
        • et al.
        Prospective randomized controlled study on the effects of Saccharomyces boulardii CNCM I-745 and amoxicillin-clavulanate or the combination on the gut microbiota of healthy volunteers.
        Gut Microbes. 2017; : 17-32
        • Mangin I.
        • Leveque C.
        • Magne F.
        • Suau A.
        • Pochart P.
        Long-term changes in human colonic Bifidobacterium populations induced by a 5-day oral amoxicillin-clavulanic acid treatment.
        PLoS One. 2012; : e50257
        • Young V.B.
        • Schmidt T.M.
        Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota.
        J Clin Microbiol. 2004; : 1203-1206
        • Nord C.E.
        • Bergan T.
        • Thorsteinsson S.B.
        Impact of ticarcillin/clavulanate on the intestinal microflora.
        J Antimicrob Chemother. 1989; : 221-226
        • Nord C.E.
        • Heimdahl A.
        • Lundberg C.
        • Marklund G.
        Impact of cefaclor on the normal human oropharyngeal and intestinal microflora.
        Scand J Infect Dis. 1987; : 681-685
        • Finegold S.M.
        • Ingram-Drake L.
        • Gee R.
        • Reinhardt J.
        • Edelstein M.A.
        • MacDonald K.
        • et al.
        Bowel flora changes in humans receiving cefixime (CL 284,635) or cefaclor.
        Antimicrob Agents Chemother. 1987; : 443-446
        • Lode H.
        • Muller C.
        • Borner K.
        • Nord C.E.
        • Koeppe P.
        Multiple-dose pharmacokinetics of cefprozil and its impact on intestinal flora of volunteers.
        Antimicrob Agents Chemother. 1992; : 144-149
        • Edlund C.
        • Brismar B.
        • Sakamoto H.
        • Nord C.E.
        Impact of Cefuroxime-axetil on the Normal Intestinal Microflora.
        Microbial Ecology in Health and Disease. 1993; : 185-189
        • Edlund C.
        • Barkholt L.
        • Olsson-Liljequist B.
        • Nord C.E.
        Effect of vancomycin on intestinal flora of patients who previously received antimicrobial therapy.
        Clin Infect Dis. 1997; : 729-732
        • Mulligan M.E.
        • Citron D.
        • Gabay E.
        • Kirby B.D.
        • George W.L.
        • Finegold S.M.
        Alterations in human fecal flora, including ingrowth of Clostridium difficile, related to cefoxitin therapy.
        Antimicrob Agents Chemother. 1984; : 343-346
        • Nord C.E.
        • Grahnen A.
        • Eckernas S.A.
        Effect of loracarbef on the normal oropharyngeal and intestinal microflora.
        Scand J Infect Dis. 1991; : 255-260
        • Nord C.E.
        • Movin G.
        • Stalberg D.
        Impact of cefixime on the normal intestinal microflora.
        Scand J Infect Dis. 1988; : 547-552
        • Novelli A.
        • Mazzei T.
        • Fallani S.
        • Dei R.
        • Cassetta M.I.
        • Conti S.
        Betalactam therapy and intestinal flora.
        J Chemother. 1995; : 25-31
        • Alestig K.
        • Carlberg H.
        • Nord C.E.
        • Trollfors B.
        Effect of cefoperazone on faecal flora.
        J Antimicrob Chemother. 1983; : 163-167
        • Mulligan M.E.
        • Citron D.M.
        • McNamara B.T.
        • Finegold S.M.
        Impact of cefoperazone therapy on fecal flora.
        Antimicrob Agents Chemother. 1982; : 226-230
        • Welling G.W.
        • Meijer-Severs G.J.
        • Helmus G.
        • van Santen E.
        • Tonk R.H.
        • de Vries-Hospers H.G.
        • et al.
        The effect of ceftriaxone on the anaerobic bacterial flora and the bacterial enzymatic activity in the intestinal tract.
        Infection. 1991; : 313-316
        • de Vries-Hospers H.G.
        • Tonk R.H.
        • van der Waaij D.
        Effect of intramuscular ceftriaxone on aerobic oral and faecal flora of 11 healthy volunteers.
        Scand J Infect Dis. 1991; : 625-633
        • Meijer-Severs G.J.
        • Van Santen E.
        • Meijer B.C.
        Short-chain fatty acid and organic acid concentrations in feces of healthy human volunteers and their correlations with anaerobe cultural counts during systemic ceftriaxone administration.
        Scand J Gastroenterol. 1990; : 698-704
        • Arvidsson A.
        • Leijd B.
        • Nord C.E.
        • Angelin B.
        Interindividual variability in biliary excretion of ceftriaxone: effects on biliary lipid metabolism and on intestinal microflora.
        Eur J Clin Invest. 1988; : 261-266
        • Nilsson-Ehle I.
        • Nord C.E.
        • Ursing B.
        Ceftriaxone: pharmacokinetics and effect on the intestinal microflora in patients with acute bacterial infections.
        Scand J Infect Dis. 1985; : 77-82
        • Vogel F.
        • Ochs H.R.
        • Wettich K.
        • Kalich S.
        • Nilsson-Ehle I.
        • Odenholt I.
        • et al.
        Effect of step-down therapy of ceftriaxone plus loracarbef versus parenteral therapy of ceftriaxone on the intestinal microflora in patients with community-acquired pneumonia.
        Clin Microbiol Infect. 2001; : 376-379
        • Orrhage K.
        • Sjostedt S.
        • Nord C.E.
        Effect of supplements with lactic acid bacteria and oligofructose on the intestinal microflora during administration of cefpodoxime proxetil.
        J Antimicrob Chemother. 2000; : 603-612
        • Brismar B.
        • Edlund C.
        • Nord C.E.
        Effect of ceftibuten on the normal intestinal microflora.
        Infection. 1993; : 373-375
        • Rashid M.U.
        • Rosenborg S.
        • Panagiotidis G.
        • Lofdal K.S.
        • Weintraub A.
        • Nord C.E.
        Ecological effect of ceftazidime/avibactam on the normal human intestinal microbiota.
        Int J Antimicrob Agents. 2015; : 60-65
        • Bacher K.
        • Schaeffer M.
        • Lode H.
        • Nord C.E.
        • Borner K.
        • Koeppe P.
        Multiple dose pharmacokinetics, safety, and effects on faecal microflora, of cefepime in healthy volunteers.
        J Antimicrob Chemother. 1992; : 365-375
        • Knothe H.
        • Schafer V.
        • Sammann A.
        • Badian M.
        • Shah P.M.
        Influence of cefpirome on pharyngeal and faecal flora after single and multiple intravenous administrations of cefpirome to healthy volunteers.
        J Antimicrob Chemother. 1992; : 81-86
        • Panagiotidis G.
        • Backstrom T.
        • Asker-Hagelberg C.
        • Jandourek A.
        • Weintraub A.
        • Nord C.E.
        Effect of ceftaroline on normal human intestinal microflora.
        Antimicrob Agents Chemother. 2010; : 1811-1814
        • Rashid M.U.
        • Rosenborg S.
        • Panagiotidis G.
        • Soderberg-Lofdal K.
        • Weintraub A.
        • Nord C.E.
        Ecological Effect of Ceftaroline-Avibactam on the Normal Human Intestinal Microbiota.
        Antimicrob Agents Chemother. 2015; : 4504-4509
        • Backstrom T.
        • Panagiotidis G.
        • Beck O.
        • Asker-Hagelberg C.
        • Rashid M.U.
        • Weintraub A.
        • et al.
        Effect of ceftobiprole on the normal human intestinal microflora.
        Int J Antimicrob Agents. 2010; : 537-541
        • Bergan T.
        • Nord C.E.
        • Thorsteinsson S.B.
        Effect of meropenem on the intestinal microflora.
        Eur J Clin Microbiol Infect Dis. 1991; : 524-527
        • Nakashima M.
        • Uematsu T.
        • Kosuge K.
        • Nakagawa S.
        • Hata S.
        • Sanada M.
        Pharmacokinetics and safety of BO-2727, a new injectable 1-beta-methyl carbapenem antibiotic, and its effect on the faecal microflora in healthy male volunteers.
        J Antimicrob Chemother. 1994; : 987-998
        • Meijer-Severs G.J.
        • van Santen E.
        • Puister S.M.
        • Boersma W.G.
        The effect of FCE 22891, a new oral penem, on faecal flora anaerobes and their fermentation end products in patients with chronic obstructive pulmonary disease.
        Infection. 1993; 21: 311-317
        • Van der Auwera P.
        • Pensart N.
        • Korten V.
        • Murray B.E.
        • Leclercq R.
        Influence of oral glycopeptides on the fecal flora of human volunteers: selection of highly glycopeptide-resistant enterococci.
        J Infect Dis. 1996; : 1129-1136
        • Rashid M.U.
        • Weintraub A.
        • Nord C.E.
        Effect of telavancin on human intestinal microflora.
        Int J Antimicrob Agents. 2011; : 474-479
        • Nord C.E.
        • Rasmanis G.
        • Wahlund E.
        Effect of dalbavancin on the normal intestinal microflora.
        J Antimicrob Chemother. 2006; : 627-631
        • Heinsen F.A.
        • Knecht H.
        • Neulinger S.C.
        • Schmitz R.A.
        • Knecht C.
        • Kuhbacher T.
        • et al.
        Dynamic changes of the luminal and mucosa-associated gut microbiota during and after antibiotic therapy with paromomycin.
        Gut Microbes. 2015; : 243-254
        • Andremont A.
        • Trancrede C.
        • Desnottes J.F.
        Effect of oral spiramycin on the faecal and oral bacteria in human volunteers.
        J Antimicrob Chemother. 1991; : 355-360
        • Edlund C.
        • Alvan G.
        • Barkholt L.
        • Vacheron F.
        • Nord C.E.
        Pharmacokinetics and comparative effects of telithromycin (HMR 3647) and clarithromycin on the oropharyngeal and intestinal microflora.
        J Antimicrob Chemother. 2000; : 741-749
        • Brismar B.
        • Edlund C.
        • Nord C.E.
        Comparative effects of clarithromycin and erythromycin on the normal intestinal microflora.
        Scand J Infect Dis. 1991; : 635-642
        • Heimdahl A.
        • Nord C.E.
        Influence of erythromycin on the normal human flora and colonization of the oral cavity, throat and colon.
        Scand J Infect Dis. 1982; : 49-56
        • Pecquet S.
        • Chachaty E.
        • Tancrede C.
        • Andremont A.
        Effects of roxithromycin on fecal bacteria in human volunteers and resistance to colonization in gnotobiotic mice.
        Antimicrob Agents Chemother. 1991; : 548-552
        • Eckernas S.A.
        • Grahnen A.
        • Nord C.E.
        Impact of dirithromycin on the normal oral and intestinal microflora.
        Eur J Clin Microbiol Infect Dis. 1991; : 688-692
        • Rashid M.U.
        • Rosenborg S.
        • Panagiotidis G.
        • Holm J.
        • Soderberg Lofdal K.
        • Weintraub A.
        • et al.
        Ecological Effect of Solithromycin on Normal Human Oropharyngeal and Intestinal Microbiota.
        Antimicrob Agents Chemother. 2016; : 4244-4251
        • Matute A.J.
        • Schurink C.A.
        • Krijnen R.M.
        • Florijn A.
        • Rozenberg-Arska M.
        • Hoepelman I.M.
        Double-blind, placebo-controlled study comparing the effect of azithromycin with clarithromycin on oropharyngeal and bowel microflora in volunteers.
        Eur J Clin Microbiol Infect Dis. 2002; : 427-431
        • Rashid M.U.
        • Weintraub A.
        • Nord C.E.
        Development of antimicrobial resistance in the normal anaerobic microbiota during one year after administration of clindamycin or ciprofloxacin.
        Anaerobe. 2015; : 72-77
        • Rashid M.U.
        • Zaura E.
        • Buijs M.J.
        • Keijser B.J.
        • Crielaard W.
        • Nord C.E.
        • et al.
        Determining the Long-term Effect of Antibiotic Administration on the Human Normal Intestinal Microbiota Using Culture and Pyrosequencing Methods.
        Clin Infect Dis. 2015; : S77-S84
        • Card R.M.
        • Mafura M.
        • Hunt T.
        • Kirchner M.
        • Weile J.
        • Rashid M.U.
        • et al.
        Impact of Ciprofloxacin and Clindamycin Administration on Gram-Negative Bacteria Isolated from Healthy Volunteers and Characterization of the Resistance Genes They Harbor.
        Antimicrob Agents Chemother. 2015; : 4410-4416
        • Jernberg C.
        • Lofmark S.
        • Edlund C.
        • Jansson J.K.
        Long-term ecological impacts of antibiotic administration on the human intestinal microbiota.
        Isme j. 2007; : 56-66
        • Lofmark S.
        • Jernberg C.
        • Jansson J.K.
        • Edlund C.
        Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes.
        J Antimicrob Chemother. 2006; : 1160-1167
        • Lindgren M.
        • Lofmark S.
        • Edlund C.
        • Huovinen P.
        • Jalava J.
        Prolonged impact of a one-week course of clindamycin on Enterococcus spp. in human normal microbiota.
        Scand J Infect Dis. 2009; : 215-219
        • Nyberg S.D.
        • Osterblad M.
        • Hakanen A.J.
        • Lofmark S.
        • Edlund C.
        • Huovinen P.
        • et al.
        Long-term antimicrobial resistance in Escherichia coli from human intestinal microbiota after administration of clindamycin.
        Scand J Infect Dis. 2007; : 514-520
        • Jernberg C.
        • Sullivan A.
        • Edlund C.
        • Jansson J.K.
        Monitoring of antibiotic-induced alterations in the human intestinal microflora and detection of probiotic strains by use of terminal restriction fragment length polymorphism.
        Appl Environ Microbiol. 2005; : 501-506
        • Orrhage K.
        • Brismar B.
        • Nord C.E.
        Effect of Supplements with Bifidobacteriurn longum and Lactobacillus acidophilus on the Intestinal Microbiota during Administration of Clindamycin.
        Microbial Ecology in Health and Disease. 1994; : 17-25
        • Rashid M.U.
        • Panagiotidis G.
        • Backstrom T.
        • Weintraub A.
        • Nord C.E.
        Ecological impact of doxycycline at low dose on normal oropharyngeal and intestinal microflora.
        Int J Antimicrob Agents. 2013; : 352-357
        • Heimdahl A.
        • Nord C.E.
        Influence of doxycycline on the normal human flora and colonization of the oral cavity and colon.
        Scand J Infect Dis. 1983; : 293-302
        • Yamashita N.
        • Matschke K.
        • Gandhi A.
        • Korth-Bradley J.
        Tigecycline pharmacokinetics, tolerability, safety, and effect on intestinal microflora in healthy Japanese male subjects.
        J Clin Pharmacol. 2014; : 513-519
        • Nord C.E.
        • Sillerstrom E.
        • Wahlund E.
        Effect of tigecycline on normal oropharyngeal and intestinal microflora.
        Antimicrob Agents Chemother. 2006; : 3375-3380
        • Scanvic-Hameg A.
        • Chachaty E.
        • Rey J.
        • Pousson C.
        • Ozoux M.L.
        • Brunel E.
        • et al.
        Impact of quinupristin/dalfopristin (RP59500) on the faecal microflora in healthy volunteers.
        J Antimicrob Chemother. 2002; : 135-139
        • Van Saene J.J.
        • Van Saene H.K.
        • Geitz J.N.
        • Tarko-Smit N.J.
        • Lerk C.F.
        Quinolones and colonization resistance in human volunteers.
        Pharm Weekbl Sci. 1986; : 67-71
        • Edlund C.
        • Bergan T.
        • Josefsson K.
        • Solberg R.
        • Nord C.E.
        Effect of norfloxacin on human oropharyngeal and colonic microflora and multiple-dose pharmacokinetics.
        Scand J Infect Dis. 1987; : 113-121
        • de Vries-Hospers H.G.
        • Welling G.W.
        • van der Waaij D.
        Influence of quinolones on throat- and faecal flora of healthy volunteers.
        Pharm Weekbl Sci. 1987; : S41-S44
        • Pecquet S.
        • Andremont A.
        • Tancrede C.
        Selective antimicrobial modulation of the intestinal tract by norfloxacin in human volunteers and in gnotobiotic mice associated with a human fecal flora.
        Antimicrob Agents Chemother. 1986; : 1047-1052
        • Leigh D.A.
        • Walsh B.
        • Harris K.
        • Hancock P.
        • Travers G.
        Pharmacokinetics of ofloxacin and the effect on the faecal flora of healthy volunteers.
        J Antimicrob Chemother. 1988; : 115-125
        • Edlund C.
        • Kager L.
        • Malmborg A.S.
        • Sjostedt S.
        • Nord C.E.
        Effect of ofloxacin on oral and gastrointestinal microflora in patients undergoing gastric surgery.
        Eur J Clin Microbiol Infect Dis. 1988; : 135-143
        • Pecquet S.
        • Andremont A.
        • Tancrede C.
        Effect of oral ofloxacin on fecal bacteria in human volunteers.
        Antimicrob Agents Chemother. 1987; : 124-125
        • Edlund C.
        • Lidbeck A.
        • Kager L.
        • Nord C.E.
        Effect of enoxacin on colonic microflora of healthy volunteers.
        Eur J Clin Microbiol. 1987; : 298-300
        • Shah P.M.
        • Sammann A.
        • Schafer V.
        • Seczendi M.
        • Knothe H.
        Fleroxacin: safety, tolerance and effect on the faecal flora of healthy volunteers.
        J Antimicrob Chemother. 1988; : 209-213
        • Edlund C.
        • Brismar B.
        • Nord C.E.
        Effect of lomefloxacin on the normal oral and intestinal microflora.
        Eur J Clin Microbiol Infect Dis. 1990; : 35-39
        • Leigh D.A.
        • Harris C.
        • Tait S.
        • Walsh B.
        • Hancock P.
        Pharmacokinetic study of lomefloxacin and its effect on the faecal flora of volunteers.
        J Antimicrob Chemother. 1991; : 655-662
        • Stewardson A.J.
        • Gaia N.
        • Francois P.
        • Malhotra-Kumar S.
        • Delemont C.
        • Martinez de Tejada B.
        • et al.
        Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: a culture-free analysis of gut microbiota.
        Clin Microbiol Infect. 2015; 344 (e311): e341
        • de Lastours V.
        • Maugy E.
        • Mathy V.
        • Chau F.
        • Rossi B.
        • Guerin F.
        • et al.
        Ecological impact of ciprofloxacin on commensal enterococci in healthy volunteers.
        J Antimicrob Chemother. 2017; : 1574-1580
        • Dethlefsen L.
        • Relman D.A.
        Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation.
        Proc Natl Acad Sci U S A. 2011; : 4554-4561
        • Dethlefsen L.
        • Huse S.
        • Sogin M.L.
        • Relman D.A.
        The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing.
        PLoS Biol. 2008; : e280
        • Krueger W.A.
        • Ruckdeschel G.
        • Unertl K.
        Influence of intravenously administered ciprofloxacin on aerobic intestinal microflora and fecal drug levels when administered simultaneously with sucralfate.
        Antimicrob Agents Chemother. 1997; : 1725-1730
        • Borzio M.
        • Salerno F.
        • Saudelli M.
        • Galvagno D.
        • Piantoni L.
        • Fragiacomo L.
        Efficacy of oral ciprofloxacin as selective intestinal decontaminant in cirrhosis.
        Ital J Gastroenterol Hepatol. 1997; : 262-266
        • Ljungberg B.
        • Nilsson-Ehle I.
        • Edlund C.
        • Nord C.E.
        Influence of ciprofloxacin on the colonic microflora in young and elderly volunteers: no impact of the altered drug absorption.
        Scand J Infect Dis. 1990; : 205-208
        • van Saene H.K.
        • Lemmens S.E.
        • van Saene J.J.
        Gut decontamination by oral ofloxacin and ciprofloxacin in healthy volunteers.
        J Antimicrob Chemother. 1988; : 127-134
        • Esposito S.
        • Barba D.
        • Galante D.
        • Gaeta G.B.
        • Laghezza O.
        Intestinal microflora changes induced by ciprofloxacin and treatment of portal-systemic encephalopathy (PSE).
        Drugs Exp Clin Res. 1987; : 641-646
        • Holt H.A.
        • Lewis D.A.
        • White L.O.
        • Bastable S.Y.
        • Reeves D.S.
        Effect of oral ciprofloxacin on the faecal flora of healthy volunteers.
        Eur J Clin Microbiol. 1986; : 201-205
        • Bergan T.
        • Delin C.
        • Johansen S.
        • Kolstad I.M.
        • Nord C.E.
        • Thorsteinsson S.B.
        Pharmacokinetics of ciprofloxacin and effect of repeated dosage on salivary and fecal microflora.
        Antimicrob Agents Chemother. 1986; : 298-302
        • Enzensberger R.
        • Shah P.M.
        • Knothe H.
        Impact of oral ciprofloxacin on the faecal flora of healthy volunteers.
        Infection. 1985; : 273-275
        • Brumfitt W.
        • Franklin I.
        • Grady D.
        • Hamilton-Miller J.M.
        • Iliffe A.
        Changes in the pharmacokinetics of ciprofloxacin and fecal flora during administration of a 7-day course to human volunteers.
        Antimicrob Agents Chemother. 1984; : 757-761
        • Edlund C.
        • Sjostedt S.
        • Nord C.E.
        Comparative effects of levofloxacin and ofloxacin on the normal oral and intestinal microflora.
        Scand J Infect Dis. 1997; : 383-386
        • Inagaki Y.
        • Nakaya R.
        • Chida T.
        • Hashimoto S.
        The effect of levofloxacin, an optically-active isomer of ofloxacin, on fecal microflora in human volunteers.
        Jpn J Antibiot. 1992; : 241-252
        • Ritz M.
        • Lode H.
        • Fassbender M.
        • Borner K.
        • Koeppe P.
        • Nord C.E.
        Multiple-dose pharmacokinetics of sparfloxacin and its influence on fecal flora.
        Antimicrob Agents Chemother. 1994; : 455-459
        • Edlund C.
        • Nord C.E.
        Ecological effect of gatifloxacin on the normal human intestinal microflora.
        J Chemother. 1999; : 50-53
        • Barker P.J.
        • Sheehan R.
        • Teillol-Foo M.
        • Palmgren A.C.
        • Nord C.E.
        Impact of gemifloxacin on the normal human intestinal microflora.
        J Chemother. 2001; : 47-51
        • Garcia-Calvo G.
        • Molleja A.
        • Gimenez M.J.
        • Parra A.
        • Nieto E.
        • Ponte C.
        • et al.
        Effects of single oral doses of gemifloxacin (320 milligrams) versus trovafloxacin (200 milligrams) on fecal flora in healthy volunteers.
        Antimicrob Agents Chemother. 2001; : 608-611
        • Oh H.
        • Nord C.E.
        • Barkholt L.
        • Hedberg M.
        • Edlund C.
        Ecological disturbances in intestinal microflora caused by clinafloxacin, an extended-spectrum quinolone.
        Infection. 2000; : 272-277
        • Vollaard E.J.
        • Clasener H.A.
        • Janssen A.J.
        Influence of pefloxacin on microbial colonization resistance in healthy volunteers.
        Eur J Clin Microbiol Infect Dis. 1992; : 257-260
        • Marco F.
        • Gimenez M.J.
        • Jimenez de Anta M.T.
        • Marcos M.A.
        • Salva P.
        • Aguilar L.
        Comparison of rufloxacin and norfloxacin effects on faecal flora.
        J Antimicrob Chemother. 1995; : 895-901
        • Nord C.E.
        • Gajjar D.A.
        • Grasela D.M.
        Ecological impact of the des-F(6)-quinolone, BMS-284756, on the normal intestinal microflora.
        Clin Microbiol Infect. 2002; : 229-239
        • Inagaki Y.
        • Yamamoto N.
        • Chida T.
        • Okamura N.
        • Tanaka M.
        The effect of DU-6859a, a new potent fluoroquinolone, on fecal microflora in human volunteers.
        Jpn J Antibiot. 1995; : 368-379
        • van Nispen C.H.
        • Hoepelman A.I.
        • Rozenberg-Arska M.
        • Verhoef J.
        • Purkins L.
        • Willavize S.A.
        A double-blind, placebo-controlled, parallel group study of oral trovafloxacin on bowel microflora in healthy male volunteers.
        Am J Surg. 1998; : 27-31
        • Guerrant R.L.
        • Wood S.J.
        • Krongaard L.
        • Reid R.A.
        • Hodge R.H.
        Resistance among fecal flora of patients taking sulfamethoxazole-trimethoprim or trimethoprim alone.
        Antimicrob Agents Chemother. 1981; : 33-38
        • Lidin-Janson G.
        Sulphonamides in the treatment of acute Escherichia coli infection of the urinary tract in women. Clinical and ecological effects of sulphasomidine and sulphalene.
        Scand J Infect Dis. 1977; : 211-217
        • van Saene J.J.
        • van Saene H.K.
        • Tarko-Smit N.J.
        • Beukeveld G.J.
        Enterobacteriaceae suppression by three different oral doses of polymyxin E in human volunteers.
        Epidemiol Infect. 1988; : 407-417
        • Vervoort J.
        • Xavier B.B.
        • Stewardson A.
        • Coenen S.
        • Godycki-Cwirko M.
        • Adriaenssens N.
        • et al.
        Metagenomic analysis of the impact of nitrofurantoin treatment on the human faecal microbiota.
        J Antimicrob Chemother. 2015; : 1989-1992
        • Knothe H.
        • Schafer V.
        • Sammann A.
        • Shah P.M.
        Influence of fosfomycin on the intestinal and pharyngeal flora of man.
        Infection. 1991; : 18-20
        • Hendlin D.
        • Celozzi E.
        • Weissberger B.
        • Foltz E.L.
        Effect of fosfomycin on the fecal microflora of man.
        Chemotherapy. 1977; : 117-126
        • Kaji K.
        • Takaya H.
        • Saikawa S.
        • Furukawa M.
        • Sato S.
        • Kawaratani H.
        • et al.
        Rifaximin ameliorates hepatic encephalopathy and endotoxemia without affecting the gut microbiome diversity.
        World J Gastroenterol. 2017; : 8355-8366
        • Bajaj J.S.
        • Heuman D.M.
        • Sanyal A.J.
        • Hylemon P.B.
        • Sterling R.K.
        • Stravitz R.T.
        • et al.
        Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy.
        PLoS One. 2013; : e60042
        • Rashid M.U.
        • Dalhoff A.
        • Backstrom T.
        • Bjorkhem-Bergman L.
        • Panagiotidis G.
        • Weintraub A.
        • et al.
        Ecological impact of MCB3837 on the normal human microbiota.
        Int J Antimicrob Agents. 2014; : 125-130
        • Dalhoff A.
        • Rashid M.U.
        • Kapsner T.
        • Panagiotidis G.
        • Weintraub A.
        • Nord C.E.
        Analysis of effects of MCB3681, the antibacterially active substance of prodrug MCB3837, on human resident microflora as proof of principle.
        Clin Microbiol Infect. 2015; 767: e761-e764
        • Mavromanolakis E.
        • Maraki S.
        • Samonis G.
        • Tselentis Y.
        • Cranidis A.
        Effect of norfloxacin, trimethoprim-sulfamethoxazole and nitrofurantoin on fecal flora of women with recurrent urinary tract infections.
        J Chemother. 1997; : 203-207
        • Adamsson I.
        • Nord C.E.
        • Lundquist P.
        • Sjostedt S.
        • Edlund C.
        Comparative effects of omeprazole, amoxycillin plus metronidazole versus omeprazole, clarithromycin plus metronidazole on the oral, gastric and intestinal microflora in Helicobacter pylori-infected patients.
        J Antimicrob Chemother. 1999; : 629-640
        • Jakobsson H.E.
        • Jernberg C.
        • Andersson A.F.
        • Sjolund-Karlsson M.
        • Jansson J.K.
        • Engstrand L.
        Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome.
        PLoS One. 2010; : e9836
        • Buhling A.
        • Radun D.
        • Muller W.A.
        • Malfertheiner P.
        Influence of anti-Helicobacter triple-therapy with metronidazole, omeprazole and clarithromycin on intestinal microflora.
        Aliment Pharmacol Ther. 2001; : 1445-1452
        • Edlund C.
        • Beyer G.
        • Hiemer-Bau M.
        • Ziege S.
        • Lode H.
        • Nord C.E.
        Comparative effects of moxifloxacin and clarithromycin on the normal intestinal microflora.
        Scand J Infect Dis. 2000; : 81-85
        • Lode H.
        • Von der Hoh N.
        • Ziege S.
        • Borner K.
        • Nord C.E.
        Ecological effects of linezolid versus amoxicillin/clavulanic acid on the normal intestinal microflora.
        Scand J Infect Dis. 2001; : 899-903
        • van de Leur J.J.
        • Vollaard E.J.
        • Janssen A.J.
        • Dofferhoff A.S.
        Influence of low dose ciprofloxacin on microbial colonization of the digestive tract in healthy volunteers during normal and during impaired colonization resistance.
        Scand J Infect Dis. 1997; : 297-300
        • Edlund C.
        • Stark C.
        • Nord C.E.
        The relationship between an increase in beta-lactamase activity after oral administration of three new cephalosporins and protection against intestinal ecological disturbances.
        J Antimicrob Chemother. 1994; : 127-138
        • Pletz M.W.
        • Rau M.
        • Bulitta J.
        • De Roux A.
        • Burkhardt O.
        • Kruse G.
        • et al.
        Ertapenem pharmacokinetics and impact on intestinal microflora, in comparison to those of ceftriaxone, after multiple dosing in male and female volunteers.
        Antimicrob Agents Chemother. 2004; : 3765-3772
        • D'Antonio D.
        • Pizzigallo E.
        • Lacone A.
        • Violante B.
        • Di Marzio A.
        • Lombardo M.
        • et al.
        The impact of rufloxacin given as prophylaxis to patients with cancer on their oral and faecal microflora.
        J Antimicrob Chemother. 1996; : 839-847
        • Ju T.
        • Shoblak Y.
        • Gao Y.
        • Yang K.
        • Fouhse J.
        • Finlay B.B.
        • et al.
        Initial Gut Microbial Composition as a Key Factor Driving Host Response to Antibiotic Treatment, as Exemplified by the Presence or Absence of Commensal Escherichia coli.
        Appl Environ Microbiol. 2017;
        • Goldmann D.A.
        • Leclair J.
        • Macone A.
        Bacterial colonization of neonates admitted to an intensive care environment.
        J Pediatr. 1978; : 288-293
        • Sokol H.
        • Pigneur B.
        • Watterlot L.
        • Lakhdari O.
        • Bermudez-Humaran L.G.
        • Gratadoux J.J.
        • et al.
        Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients.
        Proc Natl Acad Sci U S A. 2008; : 16731-16736
        • Fujimoto T.
        • Imaeda H.
        • Takahashi K.
        • Kasumi E.
        • Bamba S.
        • Fujiyama Y.
        • et al.
        Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease.
        J Gastroenterol Hepatol. 2013; : 613-619
        • Chen W.
        • Liu F.
        • Ling Z.
        • Tong X.
        • Xiang C.
        Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer.
        PLoS One. 2012; : e39743
        • Kassinen A.
        • Krogius-Kurikka L.
        • Makivuokko H.
        • Rinttila T.
        • Paulin L.
        • Corander J.
        • et al.
        The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects.
        Gastroenterology. 2007; : 24-33
        • McFarland L.V.
        Antibiotic-associated diarrhea: epidemiology, trends and treatment.
        Future Microbiol. 2008; : 563-578
        • Koh A.
        • De Vadder F.
        • Kovatcheva-Datchary P.
        • Backhed F.
        From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.
        Cell. 2016; : 1332-1345
        • Hogenauer C.
        • Hammer H.F.
        • Krejs G.J.
        • Reisinger E.C.
        Mechanisms and management of antibiotic-associated diarrhea.
        Clin Infect Dis. 1998; : 702-710
        • Bhaskaran N.
        • Quigley C.
        • Paw C.
        • Butala S.
        • Schneider E.
        • Pandiyan P.
        Role of Short Chain Fatty Acids in Controlling Tregs and Immunopathology During Mucosal Infection.
        Front Microbiol. 2018; : 1995
        • Schilderink R.
        • Verseijden C.
        • Seppen J.
        • Muncan V.
        • van den Brink G.R.
        • Lambers T.T.
        • et al.
        The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC.
        Am J Physiol Gastrointest Liver Physiol. 2016; : G1138-G1146
        • Topping D.L.
        • Clifton P.M.
        Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides.
        Physiol Rev. 2001; : 1031-1064
        • Qin J.
        • Li Y.
        • Cai Z.
        • Li S.
        • Zhu J.
        • Zhang F.
        • et al.
        A metagenome-wide association study of gut microbiota in type 2 diabetes.
        Nature. 2012; : 55-60
        • Le Chatelier E.
        • Nielsen T.
        • Qin J.
        • Prifti E.
        • Hildebrand F.
        • Falony G.
        • et al.
        Richness of human gut microbiome correlates with metabolic markers.
        Nature. 2013; : 541-546
        • Karlsson F.H.
        • Fak F.
        • Nookaew I.
        • Tremaroli V.
        • Fagerberg B.
        • Petranovic D.
        • et al.
        Symptomatic atherosclerosis is associated with an altered gut metagenome.
        Nat Commun. 2012; : 1245
        • Smith J.G.
        • Yokoyama W.H.
        • German J.B.
        Butyric acid from the diet: actions at the level of gene expression.
        Crit Rev Food Sci Nutr. 1998; : 259-297
        • Khan S.
        • Jena G.B.
        Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat.
        Chem Biol Interact. 2014; : 1-12
        • Gao Z.
        • Yin J.
        • Zhang J.
        • Ward R.E.
        • Martin R.J.
        • Lefevre M.
        • et al.
        Butyrate improves insulin sensitivity and increases energy expenditure in mice.
        Diabetes. 2009; : 1509-1517
        • Pryde S.E.
        • Duncan S.H.
        • Hold G.L.
        • Stewart C.S.
        • Flint H.J.
        The microbiology of butyrate formation in the human colon.
        FEMS Microbiol Lett. 2002; : 133-139
        • Barcenilla A.
        • Pryde S.E.
        • Martin J.C.
        • Duncan S.H.
        • Stewart C.S.
        • Henderson C.
        • et al.
        Phylogenetic relationships of butyrate-producing bacteria from the human gut.
        Appl Environ Microbiol. 2000; : 1654-1661
        • Kitahara M.
        • Takamine F.
        • Imamura T.
        • Benno Y.
        Clostridium hiranonis sp. nov., a human intestinal bacterium with bile acid 7alpha-dehydroxylating activity.
        Int J Syst Evol Microbiol. 2001; : 39-44
        • Jakobsson H.
        • Wreiber K.
        • Fall K.
        • Fjelstad B.
        • Nyren O.
        • Engstrand L.
        Macrolide resistance in the normal microbiota after Helicobacter pylori treatment.
        Scand J Infect Dis. 2007; : 757-763
        • Sjolund M.
        • Wreiber K.
        • Andersson D.I.
        • Blaser M.J.
        • Engstrand L.
        Long-term persistence of resistant Enterococcus species after antibiotics to eradicate Helicobacter pylori.
        Ann Intern Med. 2003; : 483-487
        • Stamey T.A.
        • Condy M.
        • Mihara G.
        Prophylactic efficacy of nitrofurantoin macrocrystals and trimethoprim-sulfamethoxazole in urinary infections. Biologic effects on the vaginal and rectal flora.
        N Engl J Med. 1977; : 780-783
        • Toivanen A.
        • Kasan A.
        • Sundquist H.
        • Toivanen P.
        Effect of trimethoprim on the occurrence of drug-resistant coliform bacteria in the faecal flora.
        Chemotherapy. 1976; : 97-103
        • Abeles S.R.
        • Ly M.
        • Santiago-Rodriguez T.M.
        • Pride D.T.
        Effects of Long Term Antibiotic Therapy on Human Oral and Fecal Viromes.
        PLoS One. 2015; e0134941