Advertisement
Review| Volume 78, ISSUE 4, P261-268, April 2019

Precision medicine in resistant Tuberculosis: Treat the correct patient, at the correct time, with the correct drug

  • Sharana Mahomed
    Correspondence
    Corresponding author.
    Affiliations
    CAPRISA, Centre for the AIDS Programme of Research in South Africa, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X7, Congella, 4013, Durban, South Africa
    Search for articles by this author
  • Nesri Padayatchi
    Affiliations
    CAPRISA, Centre for the AIDS Programme of Research in South Africa, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X7, Congella, 4013, Durban, South Africa
    Search for articles by this author
  • Jerome Singh
    Affiliations
    CAPRISA, Centre for the AIDS Programme of Research in South Africa, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X7, Congella, 4013, Durban, South Africa
    Search for articles by this author
  • Kogieleum Naidoo
    Affiliations
    CAPRISA, Centre for the AIDS Programme of Research in South Africa, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X7, Congella, 4013, Durban, South Africa
    Search for articles by this author
Published:March 05, 2019DOI:https://doi.org/10.1016/j.jinf.2019.03.006

      Summary

      Human genomic mapping has advanced molecular medicine health care and created a transformative paradigm shift towards Precision Medicine. In 2015, President Obama launched the PM initiative, encapsulated as “unique individualized data-driven treatments”. Since then, this field is rapidly advancing both curative treatment and disease prevention by accounting for both individual and environmental variability. While a substantial evidence for accelerating adoption of Precision Medicine in other spheres of medicine exists, application of Precision Medicine in infectious diseases is far more complex.
      One of the most warranted applications of precision healthcare is in the management and treatment of Drug-resistant Tuberculosis. Application of Precision Medicine to Drug-resistant Tuberculosis could potentially change the landscape of treatment and prevention of a disease affecting vulnerable patients in impoverished communities. Poorly diagnosed and treated Drug-resistant Tuberculosis not only leads to increased mortality and morbidity but also increased transmission of DR-TB strains, fuelling ongoing high incidence rates and further infection.
      A Precision medicine model using individual clinical case histories used in conjunction with Mycobacterium Tuberculosis infection genomic data will better guide health care practitioners in more appropriate drug selection, and an individualized management approach. This viewpoint deliberates the intricacies of adopting a PM approach in the management of DR-TB. If applied correctly, we postulate that the research, application, and deployment of PM in DR-TB management may address the fundamental rule of PM in infectious disease: to treat the correct patient, at the correct time, with the correct drug.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Collins F.S.
        • Varmus H.
        A new initiative on precision medicine.
        New Engl J Med. 2015; 372: 793-795
        • Mirnezami R.
        • Nicholson J.
        • Darzi A.
        Preparing for precision medicine.
        New Engl J Med. 2012; 366: 489-491
        • Ashley E.A.
        The PM initiative.
        JAMA. 2015 2; 313: 2119-2120
        • Moeini R.
        • Memariani Z.
        • Pasalar P.
        • Gorji N.
        Historical root of precision medicine: an ancient concept concordant with the modern pharmacotherapy.
        DARU J Pharmaceut Sci. 2017; 25: 7
        • Squassina A.
        • Manchia M.
        • Manolopoulos V.G.
        • Artac M.
        • Lappa-Manakou C.
        • Karkabouna S.
        • et al.
        Realities and expectations of pharmacogenomics and personalized medicine: impact of translating genetic knowledge into clinical practice.
        Future Medicine. 2010; 11: 1149-1167
        • Kelloff G.J.
        • Sigman C.C.
        Cancer biomarkers: selecting the right drug for the right patient.
        Nat Rev Drug Discov. 2012; 11: 201-214
        • Girotti M.R.
        • Gremel G.
        • Lee R.
        • Galvani E.
        • Rothwell D.
        • Viros A.
        • et al.
        Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma.
        Cancer Discov. 2016; 6: 286-299
        • Jung S.
        • Whiteaker J.R.
        • Zhao L.
        • Yoo H.-W.
        • Paulovich A.G.
        • Hahn S.H.
        Quantification of ATP7B protein in dried blood spots by peptide immuno-SRM as a potential screen for Wilson's disease.
        J Proteome Res. 2017; 16: 862-871
        • Stuart Elborn J.
        • Davies J.
        • Bell S.
        • Derichs N.
        The effect of CFTR modulation on the disease progression of cystic fibrosis in the era of precision medicine.
        J Cyst Fibros. 2016; 15: e20
        • Salter B.
        • Zhou Y.
        • Datta S.
        • Salter C.
        Bioinformatics and the politics of innovation in the life sciences: Science and the state in the United Kingdom, China, and India. Science, Technology, & Human Values. 41. SAGE Publications Sage CA, Los Angeles, CA2016: 793-826
        • Tenover F.C.
        The role for rapid molecular diagnostic tests for infectious diseases in precision medicine.
        Exp Rev PM Drug Dev. 2018; 3: 69-77
        • Prasad R.
        • Gupta N.
        Infection control in multi-drug-resistant tuberculosis.
        MDR & XDR tuberculosis. 1st ed. Jaypee Brothers Medical Publishers (P) Ltd, 2015: 251-254 (Chapter 26)
        • Cox H.
        • Hughes J.
        • Black J.
        • Nicol M.P.
        PM for drug-resistant tuberculosis in high-burden countries: is individualised treatment desirable and feasible?.
        Lancet Infect Dis. 2018; 18: 282-287
        • Olson J.E.
        • Ryu E.
        • Johnson K.J.
        • Koenig B.A.
        • Maschke K.J.
        • Morrisette J.A.
        • et al.
        The Mayo Clinic Biobank: a building block for individualized medicine.
        InMayo Clin Proc. 2013; 88: 952-962
        • Michailidou K.
        • Hall P.
        • Gonzalez-Neira A.
        • Ghoussaini M.
        • Dennis J.
        • Milne R.L.
        • et al.
        Large-scale genotyping identifies 41 new loci associated with breast cancer risk.
        Nat Genet. 2013; 45: 353-361
        • Garcia-Closas M.
        • Couch F.J.
        • Lindstrom S.
        • Michailidou K.
        • Schmidt M.K.
        • Brook M.N.
        • et al.
        Genome-wide association studies identify four ER negative-specific breast cancer risk loci.
        Nat Genet. 2013; 45: 392-398
        • Meyer K.B.
        • O'Reilly M.
        • Michailidou K.
        • Carlebur S.
        • Edwards S.L.
        • French J.D.
        • et al.
        Fine-scale mapping of the FGFR2 breast cancer risk locus: putative functional variants differentially bind FOXA1 and E2F1.
        Am J Hum Genet. 2013; 93: 1046-1060
        • Navarrete C.
        Cord blood banking.
        Cord blood stem cells and regenerative medicine. Elsevier, 2015: 197-210
        • Lundberg I.E.
        • Svensson J.
        Registries in idiopathic inflammatory myopathies.
        Curr Opin Rheumatol. 2013; 25: 729-734
        • Martin N.
        • Krol P.
        • Smith S.
        • Murray K.
        • Pilkington C.A.
        • Davidson J.E.
        • et al.
        A national registry for juvenile dermatomyositis and other paediatric idiopathic inflammatory myopathies: 10 years' experience; the Juvenile Dermatomyositis National (UK and Ireland) Cohort Biomarker Study and Repository for Idiopathic Inflammatory Myopathies.
        Rheumatology. 2010; 50: 137-145
        • Eriksson C.
        • Kokkonen H.
        • Johansson M.
        • Hallmans G.
        • Wadell G.
        • Rantapää-Dahlqvist S.
        Autoantibodies predate the onset of systemic lupus erythematosus in northern Sweden.
        Arthr Res Ther. 2011; 13: R30
        • Arbuckle M.R.
        • James J.A.
        • Kohlhase K.F.
        • Rubertone M.V.
        • Dennis G.J.
        • Harley J.B.
        Development of Anti-dsDNA autoantibodies prior to clinical diagnosis of systemic lupus erythematosus.
        Scandin J Immunol. 2001; 54: 211-219
        • Mitchell D.
        • Geissler J.
        • Parry-Jones A.
        • Keulen H.
        • Schmitt D.C.
        • Vavassori R.
        • et al.
        Biobanking from the patient perspective.
        Res Invol Engag. 2015; 1: 4
        • Betsou F.
        • Parida S.K.
        • Guillerm M.
        Infectious diseases biobanking as a catalyst towards personalized medicine: mycobacterium tuberculosis paradigm.
        Tuberculosis. 2011; 91: 524-532
        • Beresford B.
        • Sadoff J.C.
        Update on research and development pipeline: tuberculosis vaccines.
        Clin Infect Diseas. 2010; 50: 178-183
        • Preedy V.R.
        • Watson R.R.
        Global alliance for tuberculosis drug development (TB alliance).
        Handbook of disease burdens and quality of life measures. Springer New York, New York, NY2010 (4216–6)
        • Chen M.L.
        • Doddi A.
        • Royer J.
        • Freschi L.
        • Schito M.
        • Ezewudo M.
        • Kohane I.S.
        • Beam A.
        • Farhat M.
        Deep learning predicts tuberculosis drug resistance status from genome sequencing data.
        bioRxiv. 2018; 275628
        • Hodson H.
        AI enlists to stop TB.
        New Sci. 2016; 231: 24-25
        • World Health Organization
        Special programme for research and training in tropical diseases.
        Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire. 1976; 51: 285-287
        • Sandgren A.
        • Strong M.
        • Muthukrishnan P.
        • Weiner B.K.
        • Church G.M.
        • Murray M.B.
        Tuberculosis drug resistance mutation database.
        PLOS Med. 2009; 6e1000002
        • Flandrois J.-P.
        • Lina G.
        • Dumitrescu O.
        MUBII-TB-DB: a database of mutations associated with antibiotic resistance in Mycobacterium tuberculosis.
        BMC Bioinf. 2014; 15: 107
        • Coll P.
        • García de Viedma D.
        Molecular epidemiology of tuberculosis. 36. Elsevier, 2018: 233-240
        • Abayomi A.
        • Christoffels A.
        • Grewal R.
        • Karam L.A.
        • Rossouw C.
        • Staunton C.
        • et al.
        Challenges of biobanking in South Africa to facilitate indigenous research in an environment burdened with human immunodeficiency virus, tuberculosis, and emerging noncommunicable diseases.
        Biopreserv Biobank. 2013; 11: 347-354
        • Puaschunder J.M.
        Artificial intelligence ethik (artificial intelligence ethics).
        SSRN Electron J. 2018;
        • Eyal-Altman N.
        • Last M.
        • Rubin E.
        PCM-SABRE: a platform for benchmarking and comparing outcome prediction methods in precision cancer medicine.
        BMC Bioinf. 2017; 18: 40
        • Chegou N.N.
        • Black G.F.
        • Kidd M.
        • van Helden P.D.
        • Walzl G.
        Host markers in QuantiFERON supernatants differentiate active TB from latent TB infection: preliminary report.
        BMC Pulm Med. 2009; 9: 21
        • Berry M.P.
        • Graham C.M.
        • McNab F.W.
        • Xu Z.
        • Bloch S.A.
        • Oni T.
        • et al.
        An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis.
        Nature. 2010; 466: 973
        • Young B.L.
        • Mlamla Z.
        • Gqamana P.P.
        • Smit S.
        • Roberts T.
        • Peter J.
        • et al.
        The identification of tuberculosis biomarkers in human urine samples.
        Eur Respirat J. 2014; 43: 1719-1729
        • Lu L.L.
        • Chung A.W.
        • Rosebrock T.R.
        • Ghebremichael M.
        • Yu W.H.
        • Grace P.S.
        • et al.
        A functional role for antibodies in tuberculosis.
        Cell. 2016; 167: 433-443
        • Chegou N.N.
        • Sutherland J.S.
        • Malherbe S.
        • Crampin A.C.
        • Corstjens P.L.
        • Geluk A.
        • et al.
        Diagnostic performance of a seven-marker serum protein biosignature for the diagnosis of active TB disease in African primary healthcare clinic attendees with signs and symptoms suggestive of TB.
        Thorax. 2016; 71: 785-794
        • Liu C.
        • Zhao Z.
        • Fan J.
        • Lyon C.J.
        • Wu H.J.
        • Nedelkov D.
        • et al.
        Quantification of circulating Mycobacterium tuberculosis antigen peptides allows rapid diagnosis of active disease and treatment monitoring.
        Proc Natl Acad Sci. 2017; 114: 3969-3974
        • Jones A.
        • Pitts M.
        • Juma'a R.
        • Gibbons J.
        • Ramsay A.
        • Goletti D.
        • et al.
        New synthetic lipid antigens for rapid serological diagnosis of tuberculosis.
        PloS One. 2017; 12e0181414
        • Goldfield N.
        Purchasing population health.
        J Ambul Care Manag. 1998; 21: 82-85
        • Louie L.G.
        • Hartogensis W.E.
        • Jackman R.P.
        • Schultz K.A.
        • Zijenah L.S.
        • Yiu C.H.
        • et al.
        Mycobacterium tuberculosis/HIV-1 coinfection and disease: role of human leukocyte antigen variation.
        J Infect Diseas. 2004; 189: 1084-1090
        • Naranbhai V.
        • Moodley D.
        • Chipato T.
        • Stranix-Chibanda L.
        • Nakabaiito C.
        • Kamateeka M.
        • et al.
        The association between the ratio of monocytes: lymphocytes and risk of tuberculosis among HIV-infected postpartum women.
        J Acquir Immune Defic Syndr. 2014; 67: 573-575
        • Zak D.E.
        • Penn-Nicholson A.
        • Scriba T.J.
        • Thompson E.
        • Suliman S.
        • Amon L.M.
        • et al.
        A blood RNA signature for tuberculosis disease risk: a prospective cohort study.
        The Lancet. 2016; 387: 2312-2322
        • Fletcher H.A.
        • Snowden M.A.
        • Landry B.
        • Rida W.
        • Satti I.
        • Harris S.A.
        • et al.
        T-cell activation is an immune correlate of risk in BCG vaccinated infants.
        Nat Commun. 2016; 7: 11290
        • Petruccioli E.
        • Scriba T.J.
        • Petrone L.
        • Hatherill M.
        • Cirillo D.M.
        • Joosten S.A.
        • et al.
        Correlates of tuberculosis risk: predictive biomarkers for progression to active tuberculosis.
        Eur Respir J. 2016; 48: 1751-1763
        • Sutherland J.S.
        • Hill P.C.
        • Adetifa I.M.
        • de Jong B.C.
        • Donkor S.
        • Joosten S.A.
        • et al.
        Identification of probable early-onset biomarkers for tuberculosis disease progression.
        PLoS One. 2011; 6: e25230
        • Selvaraj P.
        • Nisha Rajeswari D.
        • Jawahar M.S.
        • Narayanan P.R.
        Influence of HLA-DRB1 alleles on Th1 and Th2 cytokine response to Mycobacterium tuberculosis antigens in pulmonary tuberculosis.
        Tuberculosis. 2007; 87: 544-550
        • Lewinsohn D.A.
        • Winata E.
        • Swarbrick G.M.
        • Tanner K.E.
        • Cook M.S.
        • Null M.D.
        • et al.
        Immunodominant tuberculosis CD8 antigens preferentially restricted by HLA-B.
        PLOS Pathoge. 2007; 3: e127
        • Bloom C.I.
        • Graham C.M.
        • Berry M.P.R.
        • Wilkinson K.A.
        • Oni T.
        • Rozakeas F.
        • et al.
        Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy.
        PLoS One. 2012; 7: e46191
        • Ashiru O.T.
        • Pillay M.
        • Sturm A.W.
        Adhesion to and invasion of pulmonary epithelial cells by the F15/LAM4/KZN and Beijing strains of Mycobacterium tuberculosis.
        J Med Microbiol. 2010; 59: 528-533
        • Glicksberg B.S.
        • Johnson K.W.
        • Dudley J.T.
        The next generation of precision medicine: observational studies, electronic health records, biobanks, and continuous monitoring.
        Hum Molecul Genet. 2018;
        • Gandhi N.R.
        • Nunn P.
        • Dheda K.
        • Schaaf H.S.
        • Zignol M.
        • Van Soolingen D.
        • et al.
        Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis.
        The Lancet. 2010; 375: 1830-1843
        • Richter E.
        • Rüsch-Gerdes S.
        • Hillemann D.
        First linezolid-resistant clinical isolates of Mycobacterium tuberculosis.
        Antimicrob Agents Chemother. 2007; 51: 1534-1536
        • Iribarren S.J.
        • Schnall R.
        • Stone P.W.
        • Carballo-Diéguez A.
        Smartphone applications to support tuberculosis prevention and treatment: Review and evaluation. 4. JMIR Publications Inc., Toronto, Canada2016: e25
        • Appelboom G.
        • Camacho E.
        • Abraham M.E.
        • Bruce S.S.
        • Dumont E.L.
        • Zacharia B.E.
        • et al.
        Smart wearable body sensors for patient self-assessment and monitoring.
        Arch Publ Health. 2014; 72: 28
        • DiStefano M.J.
        • Schmidt H.
        mHealth for Tuberculosis treatment adherence: a framework to guide ethical planning, implementation, and evaluation.
        Glob Health Sci Pract. 2016; 4: 211-221
        • Staley K.
        • Buckland S.A.
        • Hayes H.
        • Tarpey M.
        ‘The missing links’: understanding how context and mechanism influence the impact of public involvement in research.
        Health Expect. 2012; ([PMC free article] [PubMed])https://doi.org/10.1111/hex.12017
        • De Robbio A.
        Legal matters relating to biobanks: privacy, confidentiality and informed consent.
        Biobanks. Elsevier, 2013: 13-16
        • Commission E.
        Biobanks for Europe—A challenge for governance.
        Publications Office of the European Union, Luxembourg2012
        • Angraal S.
        • Krumholz H.M.
        • Schulz W.L.
        Blockchain technology: applications in health care.
        Circulation: Cardiovascular Quality and Outcomes. 2017; 10e00380027
        • Roden D.M.
        • Pulley J.M.
        • Basford M.A.
        • Bernard G.R.
        • Clayton E.W.
        • Balser J.R.
        • et al.
        Development of a large-scale de-identified DNA biobank to enable personalized medicine.
        Clin Pharmacol Therap. 2008; 84: 362-369
        • Wei B.-R.
        • Simpson R.M.
        Digital pathology and image analysis augment biospecimen annotation and biobank quality assurance harmonization.
        Clin Biochem. 2014; 47: 274-279