Advertisement

Modulation of host defence against bacterial and viral infections by omega-3 polyunsaturated fatty acids

Published:October 14, 2016DOI:https://doi.org/10.1016/j.jinf.2016.10.001

      Highlights

      • The impact of oral n-3 PUFAs intake on the risk and outcome of infections is still a matter of debate.
      • In experimental studies oral n-3 PUFAs intake is either beneficial or harmful.
      • Caution is recommended for high-dose and long-term supplementation of n-3 PUFAs in humans.

      Summary

      Objectives

      Although n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) are used widely in the treatment of chronic inflammatory diseases, their effect in infectious disease requires a particular attention.

      Methods

      The present article discusses their anti-inflammatory and immune properties involved in the host defence and presents a systematic review of the effects of their oral administration on the prevention and outcome of experimental and clinical infections.

      Results

      At a dose corresponding to an human dose of 500 mg/day, n-3 LC-PUFAs intake is beneficial against experimental infections caused by extracellular pathogens including Streptococcus pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus by reducing inflammation, and reduces the incidence of pneumococcal infections in the elderly, but at 2–4-fold higher doses as occurs in some human intervention and/or during long-term it becomes detrimental in intestinal infections with Citrobacter rodentium or Helicobacter hepaticus by exacerbating anti-inflammatory response. They are also harmful against infections caused by intracellular pathogens as Mycobacterium tuberculosis, Salmonella, Influenza virus and Herpes simplex virus by affecting the immune cell response.

      Conclusion

      The effects of n-3-LC-PUFAs on infections depend on the pathogen and the n-3 LC-PUFA dose and timing. Caution should be recommended for high-dose and long-term supplementation in humans.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tajuddin Nadeem
        • Shaikh Ali
        • Hassan Amir
        Prescription omega-3 fatty acid products: considerations for patients with diabetes mellitus.
        Diabetes Metab Syndr Obes Targets Ther. 2016; 9: 109-118https://doi.org/10.2147/DMSO.S97036
        • Hotamisligil G.S.
        Inflammation and metabolic disorders.
        Nature. 2006; 444: 860-867
        • Libby P.
        Inflammation and cardiovascular disease mechanisms.
        Am J Clin Nutr. 2006; 83: 456S-460S
        • Sperling Laurence S.
        • Nelson John R.
        History and future of omega-3 fatty acids in cardiovascular disease.
        Curr Med Res Opin. 2016; 32: 301-311https://doi.org/10.1185/03007995.2015.1120190
        • Janssen Carola IF.
        • Kiliaan Amanda J.
        Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration.
        Prog Lipid Res. 2014; 53: 1-17https://doi.org/10.1016/j.plipres.2013.10.002
        • Miles Elizabeth A.
        • Calder Philip C.
        Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis.
        Br J Nutr. 2012; : S171-S184https://doi.org/10.1017/S0007114512001560
        • Kidd Parris
        Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease.
        Altern Med Rev. 2003; 8: 223-246
        • Anderson Michele
        • Fritsche Kevin L.
        (n-3) Fatty acids and infectious disease resistance.
        J Nutr. 2002; 132: 3566-3576
        • Shaikh Saame Raza
        • Kinnun Jacob J.
        • Leng Xiaoling
        • Williams Justin A.
        • Wassall Stephen R.
        How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems.
        Biochim Biophys Acta. 2015; 1848: 211-219https://doi.org/10.1016/j.bbamem.2014.04.020
        • McMurray David N.
        • Bonilla Diana L.
        • Chapkin Robert S.
        n-3 Fatty acids uniquely affect anti-microbial resistance and immune cell plasma membrane organization.
        Chem Phys Lipids. 2011; 164: 626-635https://doi.org/10.1016/j.chemphyslip.2011.07.003
        • Bonilla Diana L.
        • Ly Lan H.
        • Fan Yang-Yi
        • Chapkin Robert S.
        • McMurray David N.
        Incorporation of a dietary omega 3 fatty acid impairs murine macrophage responses to Mycobacterium tuberculosis.
        PLoS One. 2010; 5: e10878https://doi.org/10.1371/journal.pone.0010878
        • Sijben John WC.
        • Klasing Kirk C.
        • Schrama Johan W.
        • Parmentier Henk K.
        • van der Poel Jan J.
        • Savelkoul Huub FJ.
        • et al.
        Early in vivo cytokine genes expression in chickens after challenge with Salmonella typhimurium lipopolysaccharide and modulation by dietary n-3 polyunsaturated fatty acids.
        Dev Comp Immunol. 2003; 27: 611-619
        • Kong Weimin
        • Yen Jui-Hung
        • Vassiliou Evros
        • Adhikary Sabina
        • Toscano Miguel G.
        • Ganea Doina
        Docosahexaenoic acid prevents dendritic cell maturation and in vitro and in vivo expression of the IL-12 cytokine family.
        Lipids Health Dis. 2010; 9: 12https://doi.org/10.1186/1476-511X-9-12
        • Verlengia Rozangela
        • Gorjão Renata
        • Kanunfre Carla Cristine
        • Bordin Silvana
        • De Lima Thais Martins
        • Martins Edgair Fernandes
        • et al.
        Comparative effects of eicosapentaenoic acid and docosahexaenoic acid on proliferation, cytokine production, and pleiotropic gene expression in Jurkat cells.
        J Nutr Biochem. 2004; 15: 657-665https://doi.org/10.1016/j.jnutbio.2004.04.008
        • Hou Tim Y.
        • McMurray David N.
        • Chapkin Robert S.
        Omega-3 fatty acids, lipid rafts, and T cell signaling.
        Eur J Pharmacol. 2015; https://doi.org/10.1016/j.ejphar.2015.03.091
        • Mukaro Violet R.
        • Costabile Maurizio
        • Murphy Karen J.
        • Hii Charles S.
        • Howe Peter R.
        • Ferrante Antonio
        Leukocyte numbers and function in subjects eating n-3 enriched foods: selective depression of natural killer cell levels.
        Arthritis Res Ther. 2008; 10: R57https://doi.org/10.1186/ar2426
        • Zhang Ping
        • Smith Roger
        • Chapkin R.S.
        • McMurray D.N.
        Dietary (n-3) polyunsaturated fatty acids modulate murine Th1/Th2 balance toward the Th2 pole by suppression of Th1 development.
        J Nutr. 2005; 135: 1745-1751
        • Gurzell E.A.
        • Teague Heather
        • Harris Mitchel
        • Clinthorne Jonathan
        • Shaikh S.R.
        • Fenton J.I.
        DHA-enriched fish oil targets B cell lipid microdomains and enhances ex vivo and in vivo B cell function.
        J Leukoc Biol. 2013; 93: 463-470https://doi.org/10.1189/jlb.0812394
        • James M.J.
        • Gibson R.A.
        • Cleland L.G.
        Dietary polyunsaturated fatty acids and inflammatory mediator production.
        Am J Clin Nutr. 2000; 71: 343S-348S
        • Bannenberg G.L.
        • Chiang Nan
        • Ariel Amiram
        • Arita Makoto
        • Tjonahen Eric
        • Gotlinger K.H.
        • et al.
        Molecular circuits of resolution: formation and actions of resolvins and protectins.
        J Immunol. 2005; 174: 4345-4355
        • Shirey K.A.
        • Lai W.
        • Pletneva L.M.
        • Karp C.L.
        • Divanovic S.
        • Blanco J.C.G.
        • et al.
        Role of the lipoxygenase pathway in RSV-induced alternatively activated macrophages leading to resolution of lung pathology.
        Mucosal Immunol. 2014; 7: 549-557https://doi.org/10.1038/mi.2013.71
        • Bannenberg Gerard
        • Serhan Charles N.
        Specialized pro-resolving lipid mediators in the inflammatory response: an update.
        Biochim Biophys Acta. 2010; 1801: 1260-1273https://doi.org/10.1016/j.bbalip.2010.08.002
        • Norling Lucy V.
        • Dalli Jesmond
        • Flower Roderick J.
        • Serhan Charles N.
        • Perretti Mauro
        Resolvin D1 limits polymorphonuclear leukocyte recruitment to inflammatory loci: receptor-dependent actions.
        Arterioscler Thromb Vasc Biol. 2012; 32: 1970-1978https://doi.org/10.1161/ATVBAHA.112.249508
        • Russell Clark D.
        • Schwarze Jürgen
        The role of pro-resolution lipid mediators in infectious disease.
        Immunology. 2014; 141: 166-173https://doi.org/10.1111/imm.12206
        • Bafica Andre
        • Scanga Charles A.
        • Serhan Charles
        • Machado Fabiana
        • White Sandy
        • Sher Alan
        • et al.
        Host control of Mycobacterium tuberculosis is regulated by 5-lipoxygenase-dependent lipoxin production.
        J Clin Invest. 2005; 115: 1601-1606https://doi.org/10.1172/JCI23949
        • El Kebir Driss
        • Gjorstrup Per
        • Filep János G.
        Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation.
        Proc Natl Acad Sci U S A. 2012; 109: 14983-14988https://doi.org/10.1073/pnas.1206641109
        • Chiang Nan
        • Fredman Gabrielle
        • Bäckhed Fredrik
        • Oh Sungwhan F.
        • Vickery Thad
        • Schmidt B.A.
        • et al.
        Infection regulates pro-resolving mediators that lower antibiotic requirements.
        Nature. 2012; 484: 524-528https://doi.org/10.1038/nature11042
        • Spite Matthew
        • Norling Lucy V.
        • Summers Lisa
        • Yang Rong
        • Cooper Dianne
        • Petasis Nicos A.
        • et al.
        Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis.
        Nature. 2009; 461: 1287-1291https://doi.org/10.1038/nature08541
        • Winkler Jeremy W.
        • Orr Sarah K.
        • Dalli Jesmond
        • Cheng Chien-Yee
        • Sanger Julia M.
        • Chiang Nan
        • et al.
        Resolvin D4 stereoassignment and its novel actions in host protection and bacterial clearance.
        Sci Rep. 2016; 6: 18972https://doi.org/10.1038/srep18972
        • Rajasagi Naveen K.
        • Reddy Pradeep BJ.
        • Suryawanshi Amol
        • Mulik Sachin
        • Gjorstrup Per
        • Rouse Barry T.
        Controlling herpes simplex virus-induced ocular inflammatory lesions with the lipid-derived mediator resolvin E1.
        J Immunol. 2011; 186: 1735-1746https://doi.org/10.4049/jimmunol.1003456
        • Rajasagi Naveen K.
        • Reddy Pradeep BJ.
        • Mulik Sachin
        • Gjorstrup Per
        • Rouse Barry T.
        Neuroprotectin D1 reduces the severity of herpes simplex virus-induced corneal immunopathology.
        Investig Ophthalmol Vis Sci. 2013; 54: 6269-6279https://doi.org/10.1167/iovs.13-12152
        • Imai Yumiko
        Role of omega-3 PUFA-derived mediators, the protectins, in influenza virus infection.
        Biochim Biophys Acta. 2015; 1851: 496-502https://doi.org/10.1016/j.bbalip.2015.01.006
        • Morita Masayuki
        • Kuba Keiji
        • Ichikawa Akihiko
        • Nakayama Mizuho
        • Katahira Jun
        • Iwamoto Ryo
        • et al.
        The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza.
        Cell. 2013; 153: 112-125https://doi.org/10.1016/j.cell.2013.02.027
        • Bassaganya-Riera Josep
        • Guri Amir J.
        • Noble Alexis M.
        • Reynolds Kathryn A.
        • King Jennifer
        • Wood Cynthia M.
        • et al.
        Arachidonic acid-and docosahexaenoic acid-enriched formulas modulate antigen-specific T cell responses to influenza virus in neonatal piglets.
        Am J Clin Nutr. 2007; 85: 824-836
        • Ramon Sesquile
        • Baker Steven F.
        • Sahler Julie M.
        • Kim Nina
        • Feldsott Eric A.
        • Serhan Charles N.
        • et al.
        The specialized proresolving mediator 17-HDHA enhances the antibody-mediated immune response against influenza virus: a new class of adjuvant?.
        J Immunol. 2014; 193: 6031-6040https://doi.org/10.4049/jimmunol.1302795
        • Li Hang
        • Ruan Xiong Z.
        • Powis Stephen H.
        • Fernando Ray
        • Mon Wint Y.
        • Wheeler David C.
        • et al.
        EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-gamma-dependent mechanism.
        Kidney Int. 2005; 67: 867-874https://doi.org/10.1111/j.1523-1755.2005.00151.x
        • Belvisi Maria G.
        • Hele David J.
        Peroxisome proliferator-activated receptors as novel targets in lung disease.
        Chest. 2008; 134: 152-157https://doi.org/10.1378/chest.08-0019
        • Ricote Mercedes
        • Glass Christopher K.
        PPARs and molecular mechanisms of transrepression.
        Biochim Biophys Acta. 2007; 1771: 926-935https://doi.org/10.1016/j.bbalip.2007.02.013
        • Mikhail Allen T.
        • Babcock Tricia A.
        • Jho David H.
        • Helton W. Scott
        • Brodsky Irwin G.
        • Espat N. Joseph
        Modulation of the ubiquitin-proteasome proteolytic pathway by eicosapentaenoic acid supplementation in a model of progressive malignancy.
        JPEN J Parenter Enter Nutr. 2003; 27: 105-109
        • Tiesset Hélène
        • Pierre Maud
        • Desseyn Jean-Luc
        • Guery Benoît
        • Beermann Christopher
        • Galabert Claude
        • et al.
        Dietary (n-3) polyunsaturated fatty acids affect the kinetics of pro- and antiinflammatory responses in mice with Pseudomonas aeruginosa lung infection.
        J Nutr. 2009; 139: 82-89https://doi.org/10.3945/jn.108.096115
        • Forse R.A.
        • Leibel R.
        • Askanazi J.
        • Hirsch J.
        • Kinney J.M.
        Adrenergic control of adipocyte lipolysis in trauma and sepsis.
        Ann Surg. 1987; 206: 744-751
        • Kiuchi S.
        • Matsuo N.
        • Takeyama N.
        • Tanaka T.
        Accelerated hepatic lipid synthesis in fasted septic rats.
        Eur Surg Res. 1993; 25: 146-154
        • Lee Joo Y.
        • Plakidas Anthony
        • Lee Won H.
        • Heikkinen Anne
        • Chanmugam Prithiva
        • Bray George
        • et al.
        Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids.
        J Lipid Res. 2003; 44: 479-486https://doi.org/10.1194/jlr.M200361-JLR200
        • Lee Joo Y.
        • Hwang Daniel H.
        The modulation of inflammatory gene expression by lipids: mediation through Toll-like receptors.
        Mol Cells. 2006; 21: 174-185
        • Mayer Konstantin
        • Gokorsch Stephanie
        • Fegbeutel Christine
        • Hattar Katja
        • Rosseau Simone
        • Walmrath Dieter
        • et al.
        Parenteral nutrition with fish oil modulates cytokine response in patients with sepsis.
        Am J Respir Crit Care Med. 2003; 167: 1321-1328https://doi.org/10.1164/rccm.200207-674OC
        • Martinon Fabio
        • Mayor Annick
        • Tschopp Jürg
        The inflammasomes: guardians of the body.
        Annu Rev Immunol. 2009; 27: 229-265https://doi.org/10.1146/annurev.immunol.021908.132715
        • Yan Yiqing
        • Jiang Wei
        • Spinetti Thibaud
        • Tardivel Aubry
        • Castillo Rosa
        • Bourquin Carole
        • et al.
        Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation.
        Immunity. 2013; 38: 1154-1163https://doi.org/10.1016/j.immuni.2013.05.015
        • Thaiss Christoph A.
        • Zmora Niv
        • Levy Maayan
        • Elinav Eran
        The microbiome and innate immunity.
        Nature. 2016; 535: 65-74https://doi.org/10.1038/nature18847
        • Honda Kenya
        • Littman Dan R.
        The microbiota in adaptive immune homeostasis and disease.
        Nature. 2016; 535: 75-84https://doi.org/10.1038/nature18848
        • Desbois Andrew P.
        • Smith Valerie J.
        Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential.
        Appl Microbiol Biotechnol. 2010; 85: 1629-1642https://doi.org/10.1007/s00253-009-2355-3
        • Choi Jae-Suk
        • Park Nam-Hee
        • Hwang Seon-Yeong
        • Sohn Jae Hak
        • Kwak Inseok
        • Cho Kwang Keun
        • et al.
        The antibacterial activity of various saturated and unsaturated fatty acids against several oral pathogens.
        J Environ Biol Acad Environ Biol India. 2013; 34: 673-676
        • Shin Seung Yong
        • Bajpai Vivek K.
        • Kim Hak Ryul
        • Kang Sun Chul
        Antibacterial activity of bioconverted eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) against foodborne pathogenic bacteria.
        Int J Food Microbiol. 2007; 113: 233-236https://doi.org/10.1016/j.ijfoodmicro.2006.05.020
        • Yu Hai-Ning
        • Zhu Jing
        • Pan Wen-sheng
        • Shen Sheng-Rong
        • Shan Wei-Guang
        • Das Undurti N.
        Effects of fish oil with a high content of n-3 polyunsaturated fatty acids on mouse gut microbiota.
        Arch Med Res. 2014; 45: 195-202https://doi.org/10.1016/j.arcmed.2014.03.008
        • Mujico Jorge R.
        • Baccan Gyselle C.
        • Gheorghe Alina
        • Díaz Ligia E.
        • Marcos Ascensión
        Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice.
        Br J Nutr. 2013; 110: 711-720https://doi.org/10.1017/S0007114512005612
        • Atarashi Koji
        • Tanoue Takeshi
        • Oshima Kenshiro
        • Suda Wataru
        • Nagano Yuji
        • Nishikawa Hiroyoshi
        • et al.
        Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota.
        Nature. 2013; 500: 232-236https://doi.org/10.1038/nature12331
        • Myles Ian A.
        • Fontecilla Natalia M.
        • Janelsins Brian M.
        • Vithayathil Paul J.
        • Segre Julia A.
        • Datta Sandip K.
        Parental dietary fat intake alters offspring microbiome and immunity.
        J Immunol. 2013; 191: 3200-3209https://doi.org/10.4049/jimmunol.1301057
        • Myles Ian A.
        • Pincus Nathan B.
        • Fontecilla Natalia M.
        • Datta Sandip K.
        Effects of parental omega-3 fatty acid intake on offspring microbiome and immunity.
        PLoS One. 2014; 9: e87181https://doi.org/10.1371/journal.pone.0087181
        • Freedman Steven D.
        • Blanco Paola G.
        • Zaman Munir M.
        • Shea Julie C.
        • Ollero Mario
        • Hopper Isabel K.
        • et al.
        Association of cystic fibrosis with abnormalities in fatty acid metabolism.
        N Engl J Med. 2004; 350: 560-569https://doi.org/10.1056/NEJMoa021218
        • Tetaert Daniel
        • Pierre Maud
        • Demeyer Dominique
        • Husson Marie-Odile
        • Galabert Claude
        • Beghin Laurent
        • et al.
        Dietary n-3 fatty acids have suppressive effects on mucin upregulation in mice infected with Pseudomonas aeruginosa.
        Respir Res. 2007; 11: 1-11https://doi.org/10.1186/1465-9921-8-39
        • Pierre Maud
        • Husson Marie-Odile
        • Berre Rozenn Le
        • Desseyn Jean-Luc
        • Galabert Claude
        • Béghin Laurent
        • et al.
        Omega-3 polyunsaturated fatty acids improve host response in chronic Pseudomonas aeruginosa lung infection in mice.
        Am J Physiol Lung Cell Mol Physiol. 2007; 292: 1422-1431https://doi.org/10.1152/ajplung.00337.2006
        • Caron Emilie
        • Desseyn Jean-Luc
        • Sergent Luce
        • Bartke Nana
        • Husson Marie-Odile
        • Duhamel Alain
        • et al.
        Impact of fish oils on the outcomes of a mouse model of acute Pseudomonas aeruginosa pulmonary infection.
        Br J Nutr. 2015; 113: 191-199https://doi.org/10.1017/S0007114514003705
        • Freedman Steven D.
        • Weinstein Deborah
        • Blanco Paola G.
        • Martinez-Clark Pedro
        • Urman Serge
        • Zaman Munir
        • et al.
        Characterization of LPS-induced lung inflammation in cftr−/− mice and the effect of docosahexaenoic acid.
        J Appl Physiol. 2002; 92: 2169-2176https://doi.org/10.1152/japplphysiol.00927.2001
        • van Heeckeren Anna M.
        • Schluchter Mark
        • Xue Lintong
        • Alvarez Juan
        • Freedman Steven
        • St George Judith
        • et al.
        Nutritional effects on host response to lung infections with mucoid Pseudomonas aeruginosa in mice.
        Infect Immun. 2004; 72: 1479-1486
        • Tiesset Hélène
        • Bernard Henry
        • Bartke Nana
        • Beermann Christopher
        • Flachaire Elisabeth
        • Desseyn Jean-Luc
        • et al.
        (n-3) long-chain PUFA differentially affect resistance to Pseudomonas aeruginosa infection of male and female cftr−/− mice.
        J Nutr. 2011; 141: 1101-1107https://doi.org/10.3945/jn.110.134585
        • Oliver Colleen
        • Watson Helen
        Omega-3 fatty acids for cystic fibrosis.
        Cochrane Database Syst Rev. 2013; : CD002201https://doi.org/10.1002/14651858.CD002201.pub4
        • Oliver Colleen
        • Watson Helen
        Omega-3 fatty acids for cystic fibrosis.
        Cochrane Database Syst Rev. 2016; : CD002201https://doi.org/10.1002/14651858.CD002201.pub5
        • Lawrence R.
        • Sorrell T.
        Eicosapentaenoic acid in cystic fibrosis: evidence of a pathogenetic role for leukotriene B4.
        Lancet. 1993; 342: 465-469
        • Keen Christina
        • Olin Anna-Carin
        • Eriksson Susanne
        • Ekman Anna
        • Lindblad Anders
        • Basu Samar
        • et al.
        Supplementation with fatty acids influences the airway nitric oxide and inflammatory markers in patients with cystic fibrosis.
        J Pediatr Gastroenterol Nutr. 2010; 50: 537-544https://doi.org/10.1097/MPG.0b013e3181b47967
        • Panchaud Alice
        • Sauty Alain
        • Kernen Yann
        • Decosterd Laurent A.
        • Buclin Thierry
        • Boulat Olivier
        • et al.
        Biological effects of a dietary omega-3 polyunsaturated fatty acids supplementation in cystic fibrosis patients: a randomized, crossover placebo-controlled trial.
        Clin Nutr. 2006; 25: 418-427https://doi.org/10.1016/j.clnu.2005.10.011
        • Henderson W.R.
        • Astley S.J.
        • McCready M.M.
        • Kushmerick P.
        • Casey S.
        • Becker J.W.
        • et al.
        Oral absorption of omega-3 fatty acids in patients with cystic fibrosis who have pancreatic insufficiency and in healthy control subjects.
        J Pediatr. 1994; 124: 400-408
        • Mil-Homens Dalila
        • Bernardes Nuno
        • Fialho Arsénio M.
        The antibacterial properties of docosahexaenoic omega-3 fatty acid against the cystic fibrosis multiresistant pathogen Burkholderia cenocepacia.
        FEMS Microbiol Lett. 2012; 328: 61-69https://doi.org/10.1111/j.1574-6968.2011.02476.x
        • Saini Archana
        • Harjai Kusum
        • Mohan Harsh
        • Punia Raj Pal Singh
        • Chhibber Sanjay
        Long-term flaxseed oil supplementation diet protects BALB/c mice against Streptococcus pneumoniae infection.
        Med Microbiol Immunol. 2010; 199: 27-34https://doi.org/10.1007/s00430-009-0132-7
        • Saini A.
        • Harjai K.
        • Chhibber S.
        Sea-cod oil supplementation alters the course of Streptococcus pneumoniae infection in BALB/c mice.
        Eur J Clin Microbiol Infect Dis. 2011; 30: 393-400https://doi.org/10.1007/s10096-010-1099-4
        • Saini Archana
        • Harjai Kusum
        • Chhibber Sanjay
        Inhibitory effect of polyunsaturated fatty acids on apoptosis induced by Streptococcus pneumoniae in alveolar macrophages.
        Indian J Med Res. 2013; 137: 1193-1198
        • Merchant Anwar T.
        • Curhan Gary C.
        • Rimm Eric B.
        • Willett Walter C.
        • Fawzi Wafaie W.
        Intake of n-6 and n-3 fatty acids and fish and risk of community-acquired pneumonia in US men.
        Am J Clin Nutr. 2005; 82: 668-674
        • McFarland Christine T.
        • Fan Yang-Yi
        • Chapkin Robert S.
        • Weeks Bradley R.
        • McMurray David N.
        Dietary polyunsaturated fatty acids modulate resistance to Mycobacterium tuberculosis in Guinea pigs.
        J Nutr. 2008; 138: 2123-2128https://doi.org/10.3945/jn.108.093740
        • Kang Jing X.
        • Wang Jingdong
        • Wu Lin
        • Kang Zhao B.
        Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids.
        Nature. 2004; 427: 504https://doi.org/10.1038/427504a
        • Bonilla Diana L.
        • Fan Yang-Yi
        • Chapkin Robert S.
        • McMurray David N.
        Transgenic mice enriched in omega-3 fatty acids are more susceptible to pulmonary tuberculosis: impaired resistance to tuberculosis in fat-1 mice.
        J Infect Dis. 2010; 201: 399-408https://doi.org/10.1086/650344
        • Jordao Luisa
        • Lengeling Andreas
        • Bordat Yann
        • Boudou Frederic
        • Gicquel Brigitte
        • Neyrolles Olivier
        • et al.
        Effects of omega-3 and -6 fatty acids on Mycobacterium tuberculosis in macrophages and in mice.
        Microbes Infect Institut Pasteur. 2008; 10: 1379-1386https://doi.org/10.1016/j.micinf.2008.08.004
        • Grzybowski S.
        • Dorken E.
        Tuberculosis in inuit.
        Ecol Dis. 1983; 2: 145-148
        • Byleveld P.M.
        • Pang G.T.
        • Clancy R.L.
        • Roberts D.C.
        Fish oil feeding delays influenza virus clearance and impairs production of interferon-gamma and virus-specific immunoglobulin A in the lungs of mice.
        J Nutr. 1999; 129: 328-335
        • Schwerbrock Nicole MJ.
        • Karlsson Erik A.
        • Shi Qing
        • Sheridan Patricia A.
        • Beck Melinda A.
        Fish oil-fed mice have impaired resistance to influenza infection.
        J Nutr. 2009; 139: 1588-1594https://doi.org/10.3945/jn.109.108027
        • Correia Marta
        • Michel Valérie
        • Matos António A.
        • Carvalho Patrícia
        • Oliveira Maria J.
        • Ferreira Rui M.
        • et al.
        Docosahexaenoic acid inhibits Helicobacter pylori growth in vitro and mice gastric mucosa colonization.
        PLoS One. 2012; 7: e35072https://doi.org/10.1371/journal.pone.0035072
        • Correia Marta
        • Michel Valérie
        • Osório Hugo
        • El Ghachi Meriem
        • Bonis Mathilde
        • Boneca Ivo G.
        • et al.
        Crosstalk between Helicobacter pylori and gastric epithelial cells is impaired by docosahexaenoic acid.
        PLoS One. 2013; 8: e60657https://doi.org/10.1371/journal.pone.0060657
        • Park Jong-Min
        • Jeong Migyeong
        • Kim Eun-Hee
        • Han Young-Min
        • Kwon Sung Hun
        • Hahm Ki-Baik
        Omega-3 polyunsaturated fatty acids intake to regulate Helicobacter pylori-associated gastric diseases as nonantimicrobial dietary approach.
        BioMed Res Int. 2015; 2015: 712363https://doi.org/10.1155/2015/712363
        • Meier R.
        • Wettstein A.
        • Drewe J.
        • Geiser H.R.
        Fish oil (Eicosapen) is less effective than metronidazole, in combination with pantoprazole and clarithromycin, for Helicobacter pylori eradication.
        Aliment Pharmacol Ther. 2001; 15: 851-855
        • Burich A.
        • Hershberg R.
        • Waggie K.
        • Zeng W.
        • Brabb T.
        • Westrich G.
        • et al.
        Helicobacter-induced inflammatory bowel disease in IL-10- and T cell-deficient mice.
        Am J Physiol Gastrointest Liver Physiol. 2001; 281: G764-G778
        • Shomer N.H.
        • Dangler C.A.
        • Schrenzel M.D.
        • Whary M.T.
        • Xu S.
        • Feng Y.
        • et al.
        Cholangiohepatitis and inflammatory bowel disease induced by a novel urease-negative Helicobacter species in A/J and Tac:ICR: HascidfRF mice.
        Exp Biol Med. 2001; 226: 420-428
        • Woodworth Hillary L.
        • McCaskey Sarah J.
        • Duriancik David M.
        • Clinthorne Jonathan F.
        • Langohr Ingeborg M.
        • Gardner Elizabeth M.
        • et al.
        Dietary fish oil alters T lymphocyte cell populations and exacerbates disease in a mouse model of inflammatory colitis.
        Cancer Res. 2010; 70: 7960-7969https://doi.org/10.1158/0008-5472.CAN-10-1396
        • Hekmatdoost Azita
        • Wu Xiujuan
        • Morampudi Vijay
        • Innis Sheila M.
        • Jacobson Kevan
        Dietary oils modify the host immune response and colonic tissue damage following Citrobacter rodentium infection in mice.
        Am J Physiol Gastrointest Liver Physiol. 2013; 304: G917-G928https://doi.org/10.1152/ajpgi.00292.2012
        • Ghosh Sanjoy
        • DeCoffe Daniella
        • Brown Kirsty
        • Rajendiran Ethendhar
        • Estaki Mehrbod
        • Dai Chuanbin
        • et al.
        Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis.
        PLoS One. 2013; 8: e55468https://doi.org/10.1371/journal.pone.0055468
        • Takaishi Hiromasa
        • Matsuki Takahiro
        • Nakazawa Atsushi
        • Takada Toshihiko
        • Kado Shoichi
        • Asahara Takashi
        • et al.
        Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease.
        Int J Med Microbiol. 2008; 298: 463-472https://doi.org/10.1016/j.ijmm.2007.07.016
        • Nell Sandra
        • Suerbaum Sebastian
        • Josenhans Christine
        The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models.
        Nat Rev Microbiol. 2010; 8: 564-577https://doi.org/10.1038/nrmicro2403
        • Bükki Johannes
        • Stanga Zeno
        • Tellez Firouzeh Buitrago
        • Duclos Kathleen
        • Kolev Mirjam
        • Krähenmann Peter
        • et al.
        Omega-3 poly-unsaturated fatty acids for the prevention of severe neutropenic enterocolitis in patients with acute myeloid leukemia.
        Nutr Cancer. 2013; 65: 834-842https://doi.org/10.1080/01635581.2013.801998
        • Shoda R.
        • Matsueda K.
        • Yamato S.
        • Umeda N.
        Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan.
        Am J Clin Nutr. 1996; 63: 741-745
        • Feagan Brian G.
        • Sandborn William J.
        • Mittmann Ulrich
        • Bar-Meir Simon
        • D'Haens Geert
        • Bradette Marc
        • et al.
        Omega-3 free fatty acids for the maintenance of remission in Crohn disease: the EPIC randomized controlled trials.
        JAMA. 2008; 299: 1690-1697https://doi.org/10.1001/jama.299.14.1690
        • Hokari Ryota
        • Matsunaga Hisayuki
        • Miura Soichiro
        Effect of dietary fat on intestinal inflammatory diseases.
        J Gastroenterol Hepatol. 2013; 28: 33-36https://doi.org/10.1111/jgh.12252
        • Lanza-Jacoby S.
        • Flynn J.T.
        • Miller S.
        Parenteral supplementation with a fish-oil emulsion prolongs survival and improves rat lymphocyte function during sepsis.
        Nutrition. 2001; 17: 112-116
        • Johnson J.A.
        • Griswold J.A.
        • Muakkassa F.F.
        Essential fatty acids influence survival in sepsis.
        J Trauma. 1993; 35: 128-131
        • Das U.N.
        Essential fatty acids as possible enhancers of the beneficial actions of probiotics.
        Nutrition. 2002; 18: 786
        • Chang H.R.
        • Dulloo A.G.
        • Vladoianu I.R.
        • Piguet P.F.
        • Arsenijevic D.
        • Girardier L.
        • et al.
        Fish oil decreases natural resistance of mice to infection with Salmonella typhimurium.
        Metabolism. 1992; 41: 1-2
        • Liu Qing
        • Bengmark Stig
        • Qu Shen
        Nutrigenomics therapy of hepatisis C virus induced-hepatosteatosis.
        BMC Gastroenterol. 2010; 10: 49https://doi.org/10.1186/1471-230X-10-49
        • Sawada Norie
        • Inoue Manami
        • Iwasaki Motoki
        • Sasazuki Shizuka
        • Shimazu Taichi
        • Yamaji Taiki
        • et al.
        Consumption of n-3 fatty acids and fish reduces risk of hepatocellular carcinoma.
        Gastroenterology. 2012; 142: 1468-1475https://doi.org/10.1053/j.gastro.2012.02.018
        • Wu Zhengshan
        • Qin Jianjie
        • Pu Liyong
        Omega-3 fatty acid improves the clinical outcome of hepatectomized patients with hepatitis B virus (HBV)-associated hepatocellular carcinoma.
        J Biomed Res. 2012; 26: 395-399https://doi.org/10.7555/JBR.26.20120058
        • Desbois Andrew P.
        • Lawlor Keelan C.
        Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus.
        Mar Drugs. 2013; 11: 4544-4557https://doi.org/10.3390/md11114544
        • Chen Chao-Hsuan
        • Wang Yanhan
        • Nakatsuji Teruaki
        • Liu Yu-Tuseng
        • Zouboulis Christos
        • Gallo Richard
        • et al.
        An innate bactericidal oleic acid effective against skin infection of methicillin-resistant Staphylococcus aureus: a therapy concordant with evolutionary medicine.
        J Microbiol Biotechnol. 2011; 21: 391-399
        • Barton R.G.
        • Wells C.L.
        • Carlson A.
        • Singh R.
        • Sullivan J.J.
        • Cerra F.B.
        Dietary omega-3 fatty acids decrease mortality and Kupffer cell prostaglandin E2 production in a rat model of chronic sepsis.
        J Trauma. 1991; 31: 768-773
        • Courrèges M.C.
        • Benencia F.
        In vitro antiphagocytic effect of basil oil on mouse macrophages.
        Fitoterapia. 2002; 73: 369-374
        • Rayon J.I.
        • Carver J.D.
        • Wyble L.E.
        • Wiener D.
        • Dickey S.S.
        • Benford V.J.
        • et al.
        The fatty acid composition of maternal diet affects lung prostaglandin E2 levels and survival from group B streptococcal sepsis in neonatal rat pups.
        J Nutr. 1997; 127: 1989-1992
        • Fritsche K.L.
        • Shahbazian L.M.
        • Feng C.
        • Berg J.N.
        Dietary fish oil reduces survival and impairs bacterial clearance in C3H/Hen mice challenged with Listeria monocytogenes.
        Clin Sci. 1997; 92: 95-101
        • Fritsche K.L.
        • Feng C.
        • Berg J.N.
        Dietary fish oil enhances circulating interferon-gamma in mice during listeriosis without altering in vitro production of this cytokine.
        J Interferon Cytokine Res. 1997; 17: 271-277