Advertisement
Review| Volume 63, ISSUE 5, P321-326, November 2011

Download started.

Ok

The role of vitamin D deficiency in sepsis and potential therapeutic implications

      Summary

      Recent studies have shown that vitamin D has important functions besides bone and calcium homeostasis. Cells of the innate and adaptive immune system express vitamin D receptors and respond to stimulation by 1, 25-dihydroxyvitamin D. Patients with sepsis have a high mortality rate as well as a high prevalence of vitamin D deficiency. In addition, septic patients have decreased vitamin D binding protein levels which further exacerbates vitamin D deficiency. Therapy with vitamin D in animal models of sepsis improves blood coagulation parameters in disseminated intravascular coagulation and modulates levels of systemic inflammatory cytokines including TNF-α and IL-6. Vitamin D can enhance the induction of the antimicrobial peptides cathelicidin and β-defensin which are found on mucosal and epithelial surfaces and act as the body’s first line of defense against viral and bacterial pathogens. Vitamin D is potentially an attractive therapeutic agent for sepsis given its low cost and low risk of toxicity and side effects. Further prospective, randomized, controlled clinical trials of adjunctive vitamin D therapy in patients who are deficient are needed in the management of human sepsis syndrome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Infection
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Khajavi A.
        • Amirhakimi G.H.
        The rachitic lung: pulmonary findings in 30 infants and children with malnutritional rickets.
        Clin Pediatr. 1977; 16: 36-38
        • Chesney R.W.
        Vitamin D and the magic mountain: the anti-infectious role of the vitamin.
        J Peds. 2010; 156: 698-703
        • Bartley J.
        Vitamin D: emerging roles in infection and immunity.
        Expert Rev Anti Infect Ther. 2010; 8: 1359-1369
        • Holick M.F.
        Vitamin D deficiency.
        NEJM. 2007; 357: 266-281
        • Tangpricha V.
        • Pearce E.N.
        • Chen T.C.
        • Holick M.F.
        Vitamin D deficiency among free-living healthy young adults.
        Am J Med. 2002; 112: 659-662
        • Grant W.B.
        Solar ultraviolet-B irradiance and vitamin D may reduce the risk of septicemia.
        Dermato-Endocrinology. 2009; 1: 1-6
        • Liu P.T.
        • Stenger S.
        • Li H.
        • Wenzel L.
        • Tan B.H.
        • Krutzik S.R.
        • et al.
        Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response.
        Science. 2006; 311: 1770-1776
        • Lange N.E.
        • Litonjua A.
        • Hawrylowicz C.M.
        • Weiss S.
        Vitamin D., the immune system and asthma.
        Expert Rev Clin Immunol. 2009; 5: 693-702
        • Adams J.S.
        • Hewison M.
        Unexpected actions of vitamin D: new prospectives on the regulation of innate and adaptive immunity.
        Nat Clin Pract Endocrinol Metab. 2008; 4: 80-90
        • Walker V.P.
        • Modlin R.L.
        The vitamin D connection to pediatric infections and immune function.
        Pediatr Res. 2009; 65: 106-113
        • Yim S.
        • Dhawan P.
        • Ragunath C.
        • Christakos S.
        • Diamond G.
        Induction of cathelicidin in normal and CF bronchial epithelial cells by 1, 25-dihydroxyvitamin D3.
        J Cyst Fibros. 2007; 6: 403-410
        • Adams J.
        Vitamin D as a defensin.
        J Musculoskelet Neuronal Interact. 2006; 6: 344-346
        • Liu P.T.
        • Stenger S.
        • Tang D.
        • Modlin R.L.
        Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin.
        J Immunol. 2007; 179: 2060-2063
        • Mahon B.D.
        • Wittke A.
        • Weaver V.
        • Cantorna M.T.
        The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells.
        J Cell Biochem. 2003; 89: 922-932
        • Adorini L.
        • Penna G.
        Dendritic cell tolerogenicity: a key mechanism in immunomodulation by vitamin D receptor agonists.
        Hum Immunol. 2009; 70: 345-352
        • Kamen D.L.
        • Tangpricha V.
        Vitamin D and molecular actions on the immune system: modulation of innate and autoimmunity.
        J Mol Med. 2010; 88: 441-450
        • Reichel H.
        • Koeffler H.P.
        • Tobler A.
        • Norman A.W.
        1 α,25-dihydroxyvitamin D3 inhibits γ-interferon synthesis by normal human peripheral blood lymphocytes.
        PNAS. 1987; 84: 3385-3389
        • Chen S.
        • Sims G.P.
        • Chen X.X.
        • Gu Y.Y.
        • Chen S.
        • Lipsky P.E.
        Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation.
        J Immunol. 2007; 179: 1634-1647
        • Heine G.
        • Niesner U.
        • Chang H.D.
        • Steinmeyer A.
        • Zugel U.
        • Zuberbier T.
        • et al.
        1,25-dihydroxyvitamin D3 promotes IL-10 production in human B cells.
        Eur J Immunol. 2008; 38: 2210-2218
        • Hypponen E.
        • Berry D.J.
        • Wjst M.
        • Power C.
        Serum 25-hydroxyvitamin D and IgE-a significant but nonlinear relationship.
        Allergy. 2009; 64: 613-620
        • Finland M.
        • Jones W.F.
        • Barnes M.W.
        Occurrence of serious bacterial infections since the introduction of antibacterial agents.
        JAMA. 1959; 84: 2188-2197
        • Kreger B.E.
        • Craven D.E.
        • McCabe W.R.
        Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients.
        Am J Med. 1980; 68: 344-355
        • Martin G.S.
        • Mannino D.M.
        • Eaton S.
        • Moss M.
        The epidemiology of sepsis in the United States from 1979 through 2000.
        NEJM. 2003; 348: 1546-1554
        • Wesche-Soldato D.E.
        • Swan R.Z.
        • Chung C.S.
        • Ayala A.
        The apoptotic pathway as a therapeutic target in sepsis.
        Curr Drug Targets. 2007; 8: 493-500
        • Novotny N.M.
        • Lahm T.
        • Markel T.A.
        • Crisostomo P.R.
        • Wang M.
        • Wang Y.
        • et al.
        β-Blockers in sepsis: reexamining the evidence.
        Shock. 2009; 31: 113-119
        • Angus D.C.
        • Linde-Zwirble W.T.
        • Lindicker J.
        • Clermont G.
        • Carcillo J.
        • Pinsky M.R.
        Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care.
        Crit Care Med. 2001; 29: 1303-1310
        • Dellinger R.P.
        • Levy M.M.
        • Carlet J.M.
        • Bion J.
        • Parker M.M.
        • Jaeschke R.
        • et al.
        Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock.
        Intensive Care Med. 2008; 2008: 17-60
        • Leung B.
        • Harris H.W.
        NKT cells in sepsis.
        Clin Devel Immunol. 2010; (414650)
        • Riedemann N.C.
        • Guo R.F.
        • Ward P.A.
        Novel strategies for the treatment of sepsis.
        Nat Med. 2003; 9: 517-524
        • Sweet M.J.
        • Hume D.A.
        Endotoxin signal transduction in macrophages.
        J Leukoc Biol. 1996; 60: 8-26
        • Ozinsky A.
        • Underhill D.M.
        • Fontenot J.D.
        • Hajjar A.M.
        • Smith K.D.
        • Wilson C.B.
        • et al.
        The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors.
        PNAS. 2000; 97: 13766-13771
        • Chow J.C.
        • Young D.W.
        • Golenbock D.T.
        • Christ W.J.
        • Gusovsky F.
        Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction.
        J Biol Chem. 1999; 16: 10689-10692
        • Yu S.
        • Cantorna M.T.
        The vitamin D receptor is required for iNKT cell development.
        PNAS. 2008; 105: 5207-5212
        • Nierman D.M.
        • Mechanick J.I.
        Bone hyperresorption is prevalent in chronically critically ill patients.
        Chest. 1998; 114: 1122-1128
        • Berghe G.
        • Van Roosbroeck D.
        • Vanhove P.
        • Wouters P.J.
        • De Pourcq L.
        • Bouillon R.
        Bone turnover in prolonged critical illness: effect of vitamin D.
        J Clin Endocrinol Metab. 2003; 88: 4623-4632
        • Asakura H.
        • Aoshima K.
        • Suga Y.
        • Yamazaki M.
        • Morishita E.
        • Saito M.
        • et al.
        Beneficial effect of the active form of vitamin D3 against LPS-induced DIC but not against tissue-factor-induced DIC in rat models.
        Thromb Haemost. 2001; 85: 287-290
        • Moller S.
        • Laigaard F.
        • Olgaard K.
        • Hemmingsen C.
        Effect of 1,25-dihydroxy-vitamin D3 in experimental sepsis.
        Int J Med Sci. 2007; 4: 190-195
        • Horiuchi H.
        • Nagata I.
        • Komoriya K.
        Protective effect of vitamin D3 analogues on endotoxin shock in mice.
        Agents Actions. 1991; 33: 343-348
        • Deitch E.A.
        Animal models of sepsis and septic shock: a review and lessons learned.
        Shock. 1998; 9: 1-11
        • Watt G.H.
        • Ashton S.H.
        • Cook J.A.
        • Wise W.C.
        • Halushka P.V.
        • Galbraith R.M.
        Alterations in plasma levels and complexing of Gc (vitamin D-binding protein) in rats with endotoxic shock.
        Circ Shock. 1989; 28: 279-291
        • Equils O.
        • Naiki Y.
        • Shapiro A.M.
        • Michelsen K.
        • Lu D.
        • Adams J.
        • et al.
        1,25-dihydroxyvitamin D inhibits lipopolysaccharide-induced immune activation in human endothelial cells.
        Clin Exp Immunol. 2006; 143: 58-64
        • Bukoski R.D.
        • Xue H.
        On the vascular inotropic action of 1,25-(OH)2 vitamin D3.
        Am J Hypertens. 1993; 6: 388-396
        • Dahl B.
        • Schiodt F.V.
        • Ott P.
        • Wians F.
        • Lee W.M.
        • Balko J.
        • et al.
        Plasma concentration of Gc-globulin is associated with organ dysfunction and sepsis after injury.
        Crit Care Med. 2003; 31: 152-156
        • Jeng L.
        • Yamshchikov A.V.
        • Judd S.E.
        • Blumberg H.M.
        • Martin G.S.
        • Ziegler T.R.
        • et al.
        Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis.
        J Transl Med. 2009; 7: 28
        • McNally J.D.
        • Leis K.
        • Matheson L.A.
        • Karuananyake C.
        • Sankaran K.
        • Rosenberg A.M.
        Vitamin D deficiency in young children with severe acute lower respiratory infection.
        Pediatr Pulmonol. 2009; 44: 981-988
        • Leow L.
        • Simpson T.
        • Cursons R.
        • Karalus N.
        • Hancox R.J.
        Vitamin D, innate immunity and outcomes in community acquired pneumonia.
        Respirology. 2011; 16: 611-616
        • McKinney J.D.
        • Bailey B.A.
        • Garrett L.H.
        • Peiris P.
        • Manning T.
        • Peiris A.N.
        Relationship between vitamin D status and ICU outcomes in veterans.
        J Am Med Dir Assoc. 2011; 12: 208-211
        • Ginde A.A.
        • Camargo C.A.
        • Shapiro N.I.
        Vitamin D insufficiency and sepsis severity in emergency department patients with suspected infection.
        Acad Emerg Med. 2011; 18: 551-554
        • Danai P.A.
        • Sinha S.
        • Moss M.
        • Haber M.J.
        • Martin G.S.
        Seasonal variation in the epidemiology of sepsis.
        Crit Care Med. 2007; 35: 410-415
        • Bischof M.G.
        • Heinze G.
        • Vierhapper H.
        Vitamin D status and its relation to age and body mass index.
        Horm Res. 2006; 66: 211-215
        • MacLaughlin J.
        • Holick M.F.
        Aging decreases the capacity of human skin to produce vitamin D3.
        J Clin Inves. 1985; 76: 1536-1538
        • Barnato A.E.
        • Alexander S.L.
        • Linde-Zwirble W.T.
        • Angus D.C.
        Racial variation in the incidence, care and outcomes of severe sepsis: analysis of population, patient and hospital characteristics.
        Am J Respir Crit Care Med. 2008; 177: 279-284
        • Grant W.B.
        Lower vitamin D production from solar ultraviolet-B irradiance may explain some differences in cancer survival rates.
        J Natl Med Assoc. 2006; 98: 357-364
        • Giovannucci E.
        • Liu Y.
        • Willett W.C.
        Cancer incidence and mortality and vitamin D in black and white male health professionals.
        Cancer Epidemiol Biomarkers Prev. 2006; 15: 2467-2472
        • Kwak B.
        • Mulhaupt F.
        • Myit S.
        • Mach F.
        Statins as a newly recognized type of immunomodulator.
        Nat Med. 2000; 6: 1399-1402
        • Steiner S.
        • Speidl W.S.
        • Pleiner J.
        • Seidinger D.
        • Zorn G.
        • Kaun C.
        • et al.
        Simvastatin blunts endotoxin-induced tissue factor in vivo.
        Circulation. 2005; 111: 1841-1846
        • Tleyjeh I.M.
        • Kashour T.
        • Hakim F.A.
        • Zimmerman V.A.
        • Erwin P.J.
        • Sutton A.J.
        • et al.
        Statins for prevention and treatment of infections.
        Arch Intern Med. 2009; 169: 1658-1667
        • Perez-Castrillon J.L.
        • Vega G.
        • Abad L.
        • Sanz A.
        • Chaves J.
        • Hernandez G.
        • et al.
        Effects of atorvastatin on vitamin D levels in patients with acute ischemic heart disease.
        Am J Cardiol. 2007; 99: 903-905
        • Yavuz B.
        • Ertugrul D.T.
        • Cil H.
        • Ata N.
        • Akin K.O.
        • Yalcin A.A.
        • et al.
        Increased levels of 25 hydroxyvitamin D and 1,25-dihydroxyvitamin D after rosuvastatin treatment: a novel pleiotropic effect of statins?.
        Cardiovasc Drugs Ther. 2009; 23: 295-299
        • Ertugrul D.T.
        • Yavuz B.
        • Cil H.
        • Ata N.
        • Akin K.O.
        • Kucukazman M.
        • et al.
        STATIN-D study: comparison of the influences of rosuvastatin and fluvastatin treatment on the levels of 25 hydroxyvitamin D.
        Cardiovasc Ther. 2010 Mar 27; ([Epub ahead of print])
        • Razzaque M.S.
        The dualistic role of vitamin D in vascular calcifications.
        Kidney Int. 2011; 79: 708-714
        • Vieth R.
        Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety.
        Am J Clin Nutr. 1999; 69: 842-856